A Visual Hydrogen Sensor Prototype for Monitoring Magnesium Implant Biodegradation

雷苏林 生物降解 化学 生物医学工程 体内 琼脂糖 双金属片 纳米技术 催化作用 材料科学 色谱法 有机化学 生物化学 医学 生物 生物技术
作者
Michael E. Smith,Daniel P. Rose,Xiaoyu Cui,Angela L. Stastny,Peng Zhang,William R. Heineman
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (30): 10487-10494 被引量:9
标识
DOI:10.1021/acs.analchem.1c01276
摘要

Alternative metals such as magnesium (Mg) and its alloys have been recently developed for clinical applications such as temporary implants for bone and tissue repair due to their desirable mechanical properties and ability to biodegrade harmlessly in vivo by releasing Mg2+, OH–, and H2 as biodegradation products. The current methods for monitoring in vivo Mg-alloy biodegradation are either invasive and/or costly, complex, or require large equipment and specially trained personnel, thus making real-time and point-of-care monitoring of Mg-alloy implants problematic. Therefore, innovative methods are critically needed. The objective of this research was to develop a novel, thin, and wearable visual H2 sensor prototype for noninvasive monitoring of in vivo Mg-implant biodegradation in medical research and clinical settings with a fast response time. In this work, we successfully demonstrate such a prototype composed of resazurin and catalytic bimetallic gold-palladium nanoparticles (Au-Pd NPs) incorporated into a thin agarose/alginate hydrogel matrix that rapidly changes color from blue to pink upon exposure to various levels of H2 at a constant flow rate. The irreversible redox reactions occurring in the sensor involve H2, in the presence of Au-Pd NPs, converting resazurin to resorufin. To quantify the sensor color changes, ImageJ software was used to analyze photographs of the sensor taken with a smartphone during H2 exposure. The sensor concentration range was from pure H2 down to limits of detection of 6 and 8 μM H2 (defined via two methods). This range is adequate for the intended application of noninvasively monitoring in vivo Mg-alloy implant biodegradation in animals for medical research and patients in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hou发布了新的文献求助10
刚刚
佳远发布了新的文献求助10
刚刚
viper3发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
归尘应助激动的傲芙采纳,获得10
2秒前
九日科研ing完成签到,获得积分10
2秒前
2秒前
buhuola完成签到,获得积分10
3秒前
小杨完成签到,获得积分20
4秒前
周梦蝶发布了新的文献求助10
4秒前
无花果应助清欢采纳,获得10
5秒前
宝川发布了新的文献求助10
5秒前
安东尼发布了新的文献求助10
6秒前
彪彪发布了新的文献求助10
6秒前
搜集达人应助rachel采纳,获得10
6秒前
所所应助luyue9406采纳,获得10
7秒前
Owen应助啦啦啦采纳,获得10
7秒前
tiantiantian发布了新的文献求助10
7秒前
小柒发布了新的文献求助10
8秒前
元元完成签到,获得积分10
8秒前
Aurora发布了新的文献求助10
9秒前
9秒前
无心的不乐完成签到,获得积分20
10秒前
Hello应助酷酷铭采纳,获得10
10秒前
科研通AI2S应助thinker4610采纳,获得10
11秒前
共享精神应助姜维采纳,获得10
11秒前
14秒前
14秒前
14秒前
科研通AI2S应助周梦蝶采纳,获得10
15秒前
桐桐应助杨惠文采纳,获得10
15秒前
隐形曼青应助彪彪采纳,获得10
15秒前
暴躁四叔完成签到,获得积分10
15秒前
15秒前
16秒前
热情芝麻应助科研通管家采纳,获得10
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253