Refine Myself by Teaching Myself: Feature Refinement via Self-Knowledge Distillation

计算机科学 蒸馏 人工智能 特征(语言学) 分割 机器学习 水准点(测量) 过程(计算) 分类器(UML) 特征提取 语义特征 数据挖掘 模式识别(心理学) 哲学 有机化学 化学 操作系统 地理 语言学 大地测量学
作者
Mingi Ji,Seungjae Shin,Seunghyun Hwang,Gibeom Park,Il‐Chul Moon
标识
DOI:10.1109/cvpr46437.2021.01052
摘要

Knowledge distillation is a method of transferring the knowledge from a pretrained complex teacher model to a student model, so a smaller network can replace a large teacher network at the deployment stage. To reduce the necessity of training a large teacher model, the recent literatures introduced a self-knowledge distillation, which trains a student network progressively to distill its own knowledge without a pretrained teacher network. While Self-knowledge distillation is largely divided into a data augmentation based approach and an auxiliary network based approach, the data augmentation approach looses its local information in the augmentation process, which hinders its applicability to diverse vision tasks, such as semantic segmentation. Moreover, these knowledge distillation approaches do not receive the refined feature maps, which are prevalent in the object detection and semantic segmentation community. This paper proposes a novel self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation (FRSKD), which utilizes an auxiliary self-teacher network to transfer a refined knowledge for the classifier network. Our proposed method, FRSKD, can utilize both soft label and feature-map distillations for the self-knowledge distillation. Therefore, FRSKD can be applied to classification, and semantic segmentation, which emphasize preserving the local information. We demonstrate the effectiveness of FRSKD by enumerating its performance improvements in diverse tasks and benchmark datasets. The implemented code is available at https://github.com/MingiJi/FRSKD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助yesiDo采纳,获得10
1秒前
3秒前
maox1aoxin应助三次成长采纳,获得30
3秒前
Charming应助pophoo采纳,获得20
3秒前
健忘飞风发布了新的文献求助20
4秒前
5秒前
ding应助沉默觅露采纳,获得10
5秒前
牛牛完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
充电宝应助文静的从菡采纳,获得10
8秒前
七濑发布了新的文献求助10
11秒前
Ava应助QYW采纳,获得10
11秒前
隐形曼青应助妥妥酱采纳,获得10
11秒前
jevon应助pophoo采纳,获得10
11秒前
Ava应助liua采纳,获得10
12秒前
ywl发布了新的文献求助10
13秒前
14秒前
15秒前
re完成签到,获得积分10
15秒前
zz完成签到,获得积分10
16秒前
16秒前
16秒前
zhang08发布了新的文献求助30
17秒前
大大怪发布了新的文献求助10
18秒前
18秒前
19秒前
zhuling完成签到,获得积分10
19秒前
顺利的鱼完成签到,获得积分10
20秒前
re发布了新的文献求助10
20秒前
21秒前
mi发布了新的文献求助10
21秒前
科研通AI2S应助蔚蓝天空采纳,获得10
22秒前
皮灵犀完成签到,获得积分10
23秒前
lyzhou发布了新的文献求助10
24秒前
24秒前
妥妥酱发布了新的文献求助10
24秒前
holly完成签到,获得积分20
26秒前
啦啦完成签到 ,获得积分10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248