亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides

兴奋剂 材料科学 悬空债券 半导体 凝聚态物理 空位缺陷 带隙 基质(水族馆) 纳米技术 光电子学 Atom(片上系统) 化学物理 化学 物理 计算机科学 海洋学 地质学 嵌入式系统
作者
Xiankun Zhang,Li Gao,Huihui Yu,Qingliang Liao,Zhuo Kang,Zheng Zhang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (8): 655-668 被引量:31
标识
DOI:10.1021/accountsmr.1c00097
摘要

ConspectusFaced with the growing quests of higher-performance chips, developing new channel semiconductors immune to short channel effects has become a realistic option for continuing Moore’s Law. With outstanding gate electrostatic capacitance, stable chemical properties, and suitable bandgap, two-dimensional (2D) transition metal dichalcogenides (TMDCs) are considered as potential candidates for next-generation channel materials. However, the practical applications of 2D TMDCs are severely limited by stable, precise, and controllable doping technologies, due to their ultrathin body and dangling bond-free surface. Compared to three-dimensional semiconductors, donors in 2D semiconductors need larger ionization energy which can be attributed to the reduced screening of Coulomb interaction and the larger bandgap induced by quantum confinement. Limited by the ultrathin body of 2D TMDCs and the strong film–substrate charge transfer, typical silicon-based substitutional doping technology encounters some headache difficulties in 2D TMDCs and hardly achieves high-concentration doping. The other two doping technologies also cannot take on this task either; local gate electrostatic doping cannot leave the aid of the external electric field. And surface charge transfer doping of molecule adsorbents behaves unstably (e.g., thermal desorption) or ineffectively modifies the original electronic structure. Fortunately, single-atom vacancies can effectively and precisely adjust the carrier concentration of 2D TMDCs and significantly enhance their conductivity. Therefore, clarifying the work rules and function mechanism of single-atom vacancy doping in 2D TMDCs is beneficial in creating a brand-new optimization strategy of electrical properties and overcoming the technical obstacles of the “lab-to-fab” transition for their practical applications in high-performance electronics and optoelectronics.In this Account, we summarize the state-of-the-art progress in single-atom vacancy doping in 2D TMDCs and highlight the applications in optoelectronic and electronic devices. First, the common defects and the density-largest-defect type in 2D TMDCs are demonstrated through experimental characterizations. Second, the healing and manufacturing strategies of chalcogen vacancies in 2D TMDCs are systematically summarized. Third, we clarify the doping mechanism of single-atom vacancies in 2D TMDCs and its regulation of the electrical properties including carrier concentration and carrier mobility. Fourth, the correlations between chalcogen vacancies in 2D TMDCs and the optical signals from Raman and photoluminescence spectroscopies are established, which will help to quickly and nondestructively evaluate the chalcogen vacancy concentration. Fifth, the current applications of single-atom vacancy doping of 2D TMDCs materials are reviewed, including complementary metal–oxide semiconductor (CMOS) logic inverters, homojunctions, Schottky diodes, and photovoltaic devices. Finally, the potential challenges and future development trends of single-atom vacancy doping for next-generation electronic and optoelectronic devices are pointed out. Overall, this Account guides on controllable and precise doping technologies for researchers in these fields from materials, electronics, and optoelectronics to promote the practical applications of 2D TMDCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
3秒前
7秒前
希望天下0贩的0应助wyz采纳,获得10
14秒前
21秒前
wyz发布了新的文献求助10
26秒前
斯文败类应助sjs11采纳,获得10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
kai chen完成签到 ,获得积分0
3分钟前
hua完成签到,获得积分10
4分钟前
4分钟前
hua发布了新的文献求助20
4分钟前
4分钟前
5分钟前
黄花菜完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
英俊的铭应助聪明的青雪采纳,获得10
6分钟前
鹤鸣发布了新的文献求助10
7分钟前
茗溪完成签到 ,获得积分10
7分钟前
鹤鸣发布了新的文献求助10
7分钟前
7分钟前
7分钟前
自信号厂完成签到 ,获得积分10
8分钟前
鹤鸣发布了新的文献求助30
8分钟前
FashionBoy应助雪球采纳,获得10
9分钟前
9分钟前
鹤鸣发布了新的文献求助10
9分钟前
LILILI完成签到 ,获得积分10
9分钟前
9分钟前
Orange应助聪明的青雪采纳,获得10
9分钟前
鹤鸣发布了新的文献求助30
9分钟前
9分钟前
鹤鸣发布了新的文献求助10
9分钟前
10分钟前
10分钟前
高分求助中
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Nonlocal Integral Equation Continuum Models: Nonstandard Symmetric Interaction Neighborhoods and Finite Element Discretizations 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2874575
求助须知:如何正确求助?哪些是违规求助? 2484683
关于积分的说明 6729664
捐赠科研通 2168983
什么是DOI,文献DOI怎么找? 1152469
版权声明 585845
科研通“疑难数据库(出版商)”最低求助积分说明 565714