Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides

兴奋剂 材料科学 悬空债券 半导体 凝聚态物理 空位缺陷 带隙 基质(水族馆) 纳米技术 光电子学 Atom(片上系统) 化学物理 化学 物理 计算机科学 海洋学 地质学 嵌入式系统
作者
Xiankun Zhang,Li Gao,Huihui Yu,Qingliang Liao,Zhuo Kang,Zheng Zhang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (8): 655-668 被引量:31
标识
DOI:10.1021/accountsmr.1c00097
摘要

ConspectusFaced with the growing quests of higher-performance chips, developing new channel semiconductors immune to short channel effects has become a realistic option for continuing Moore’s Law. With outstanding gate electrostatic capacitance, stable chemical properties, and suitable bandgap, two-dimensional (2D) transition metal dichalcogenides (TMDCs) are considered as potential candidates for next-generation channel materials. However, the practical applications of 2D TMDCs are severely limited by stable, precise, and controllable doping technologies, due to their ultrathin body and dangling bond-free surface. Compared to three-dimensional semiconductors, donors in 2D semiconductors need larger ionization energy which can be attributed to the reduced screening of Coulomb interaction and the larger bandgap induced by quantum confinement. Limited by the ultrathin body of 2D TMDCs and the strong film–substrate charge transfer, typical silicon-based substitutional doping technology encounters some headache difficulties in 2D TMDCs and hardly achieves high-concentration doping. The other two doping technologies also cannot take on this task either; local gate electrostatic doping cannot leave the aid of the external electric field. And surface charge transfer doping of molecule adsorbents behaves unstably (e.g., thermal desorption) or ineffectively modifies the original electronic structure. Fortunately, single-atom vacancies can effectively and precisely adjust the carrier concentration of 2D TMDCs and significantly enhance their conductivity. Therefore, clarifying the work rules and function mechanism of single-atom vacancy doping in 2D TMDCs is beneficial in creating a brand-new optimization strategy of electrical properties and overcoming the technical obstacles of the “lab-to-fab” transition for their practical applications in high-performance electronics and optoelectronics.In this Account, we summarize the state-of-the-art progress in single-atom vacancy doping in 2D TMDCs and highlight the applications in optoelectronic and electronic devices. First, the common defects and the density-largest-defect type in 2D TMDCs are demonstrated through experimental characterizations. Second, the healing and manufacturing strategies of chalcogen vacancies in 2D TMDCs are systematically summarized. Third, we clarify the doping mechanism of single-atom vacancies in 2D TMDCs and its regulation of the electrical properties including carrier concentration and carrier mobility. Fourth, the correlations between chalcogen vacancies in 2D TMDCs and the optical signals from Raman and photoluminescence spectroscopies are established, which will help to quickly and nondestructively evaluate the chalcogen vacancy concentration. Fifth, the current applications of single-atom vacancy doping of 2D TMDCs materials are reviewed, including complementary metal–oxide semiconductor (CMOS) logic inverters, homojunctions, Schottky diodes, and photovoltaic devices. Finally, the potential challenges and future development trends of single-atom vacancy doping for next-generation electronic and optoelectronic devices are pointed out. Overall, this Account guides on controllable and precise doping technologies for researchers in these fields from materials, electronics, and optoelectronics to promote the practical applications of 2D TMDCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林大侠完成签到,获得积分10
刚刚
科研通AI2S应助迷路筝采纳,获得10
1秒前
吃什么鸭完成签到,获得积分10
1秒前
深情安青应助lilac采纳,获得10
1秒前
能不能下载啊完成签到,获得积分10
2秒前
田様应助lina采纳,获得10
2秒前
大模型应助太拗口哟采纳,获得10
2秒前
斯文败类应助王建采纳,获得10
2秒前
3秒前
qu发布了新的文献求助10
3秒前
小宋完成签到,获得积分10
4秒前
4秒前
泰裤辣完成签到,获得积分10
4秒前
5秒前
5秒前
yuanletong发布了新的文献求助10
6秒前
梦会故乡完成签到,获得积分10
6秒前
6秒前
36456657应助朝春日走去采纳,获得10
7秒前
8秒前
8秒前
8秒前
恰似快乐完成签到,获得积分20
8秒前
111完成签到,获得积分10
9秒前
丘比特应助笑点低嵩采纳,获得10
9秒前
小璐璐呀完成签到,获得积分10
9秒前
one发布了新的文献求助10
10秒前
JamesPei应助优秀不愁采纳,获得10
10秒前
guan发布了新的文献求助10
10秒前
宇文非笑发布了新的文献求助10
11秒前
Xzai发布了新的文献求助10
11秒前
xionggege完成签到,获得积分10
11秒前
12秒前
li完成签到,获得积分20
12秒前
Orange应助不觉晚风采纳,获得30
12秒前
科研通AI2S应助踏实小刺猬采纳,获得10
12秒前
QYW应助悬壶济世之骨科采纳,获得10
13秒前
Sepsp完成签到,获得积分10
13秒前
13秒前
Lucas应助东东采纳,获得10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415191
求助须知:如何正确求助?哪些是违规求助? 3017053
关于积分的说明 8879492
捐赠科研通 2704696
什么是DOI,文献DOI怎么找? 1482971
科研通“疑难数据库(出版商)”最低求助积分说明 685601
邀请新用户注册赠送积分活动 680526