表征(材料科学)
计算机科学
功能(生物学)
概率逻辑
人工智能
集合(抽象数据类型)
鉴定(生物学)
材料科学
纳米技术
自动化
机器学习
工程类
机械工程
植物
进化生物学
生物
程序设计语言
作者
Phillip M. Maffettone,Lars Banko,Peng Cui,Yury Lysogorskiy,Marc A. Little,Daniel Olds,Alfred Ludwig,Andrew I. Cooper
标识
DOI:10.1038/s43588-021-00059-2
摘要
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
科研通智能强力驱动
Strongly Powered by AbleSci AI