Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis.

缺氧(环境) 癌细胞 肿瘤缺氧 血管生成 乳酸脱氢酶A 细胞生物学 癌症 细胞迁移 巴基斯坦卢比 生物
作者
Wenqi Yu,Ruyi Lin,Xueqin He,Xiaotong Yang,Huilin Zhang,Chuan Hu,Rui Liu,Yuan Huang,Yi Qin,Huile Gao
出处
期刊:Acta Pharmaceutica Sinica B [Elsevier]
卷期号:11 (9): 2924-2936 被引量:3
标识
DOI:10.1016/j.apsb.2021.04.006
摘要

Abstract Solid tumors always exhibit local hypoxia, resulting in the high metastasis and inertness to chemotherapy. Reconstruction of hypoxic tumor microenvironment (TME) is considered a potential therapy compared to directly killing tumor cells. However, the insufficient oxygen delivery to deep tumor and the confronting “Warburg effect” compromise the efficacy of hypoxia alleviation. Herein, we construct a cascade enzyme-powered nanomotor (NM-si), which can simultaneously provide sufficient oxygen in deep tumor and inhibit the aerobic glycolysis to potentiate anti-metastasis in chemotherapy. Catalase (Cat) and glucose oxidase (GOx) are co-adsorbed on our previously reported CAuNCs@HA to form self-propelled nanomotor (NM), with hexokinase-2 (HK-2) siRNA further condensed (NM-si). The persistent production of oxygen bubbles from the cascade enzymatic reaction propels NM-si to move forward autonomously and in a controllable direction along H2O2 gradient towards deep tumor, with hypoxia successfully alleviated in the meantime. The autonomous movement also facilitates NM-si with lysosome escaping for efficient HK-2 knockdown to inhibit glycolysis. In vivo results demonstrated a promising anti-metastasis effect of commercially available albumin-bound paclitaxel (PTX@HSA) after pre-treated with NM-si for TME reconstruction. This cascade enzyme-powered nanomotor provides a potential prospect in reversing the hypoxic TME and metabolic pathway for reinforced anti-metastasis of chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大碗完成签到 ,获得积分10
刚刚
念姬发布了新的文献求助50
1秒前
whh发布了新的文献求助10
2秒前
3秒前
Lucas应助个性迎彤采纳,获得10
3秒前
Infinity完成签到,获得积分10
3秒前
du2002完成签到,获得积分10
3秒前
lddd发布了新的文献求助30
4秒前
4秒前
4秒前
1212发布了新的文献求助10
4秒前
酷酷龙猫完成签到 ,获得积分10
4秒前
orixero应助abc采纳,获得10
4秒前
5秒前
丹丹子完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
LXZ发布了新的文献求助10
8秒前
可乐发布了新的文献求助20
8秒前
复杂千雁关注了科研通微信公众号
8秒前
光能使者发布了新的文献求助10
9秒前
科研通AI2S应助周周采纳,获得10
9秒前
小屁孩应助周周采纳,获得20
9秒前
通关完成签到 ,获得积分10
10秒前
子小孙发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
14秒前
14秒前
14秒前
小蘑菇应助横A采纳,获得10
14秒前
今后应助周女士采纳,获得10
14秒前
14秒前
科研通AI2S应助pi采纳,获得10
14秒前
15秒前
111完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866