Validating a biosignature-predicting placebo pill response in chronic pain in the settings of a randomized controlled trial

安慰剂 医学 慢性疼痛 随机对照试验 安慰剂反应 止痛药 麻醉 内科学 物理疗法 病理 替代医学
作者
Étienne Vachon‐Presseau,Taha Abdullah,Sara Berger,L. Q. Huang,James W. Griffith,Thomas J. Schnitzer,A. Vania Apkarian
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
卷期号:163 (5): 910-922 被引量:10
标识
DOI:10.1097/j.pain.0000000000002450
摘要

Abstract The objective of this study is to validate a placebo pill response predictive model—a biosignature —that classifies chronic pain patients into placebo responders ( predicted-PTxResp ) and nonresponders ( predicted-PTxNonR ) and test whether it can dissociate placebo and active treatment responses. The model, based on psychological and brain functional connectivity, was derived in our previous study and blindly applied to current trial participants. Ninety-four chronic low back pain (CLBP) patients were classified into predicted-PTxResp or predicted-PTxNonR and randomized into no treatment, placebo treatment, or naproxen treatment. To monitor analgesia, back pain intensity was collected twice a day: 3 weeks baseline, 6 weeks of treatment, and 3 weeks of washout. Eighty-nine CLBP patients were included in the intent-to-treat analyses and 77 CLBP patients in the per-protocol analyses. Both analyses showed similar results. At the group level, the predictive model performed remarkably well, dissociating the separate effect sizes of pure placebo response and pure active treatment response and demonstrating that these effects interacted additively. Pain relief was about 15% stronger in the predicted-PTxResp compared with the predicted-PTxNonR receiving either placebo or naproxen, and the predicted-PTxNonR successfully isolated the active drug effect. At a single subject level, the biosignature better predicted placebo nonresponders, with poor accuracy. One component of the biosignature (dorsolateral prefrontal cortex–precentral gyrus functional connectivity) could be generalized across 3 placebo studies and in 2 different cohorts—CLBP and osteoarthritis pain patients. This study shows that a biosignature can predict placebo response at a group level in the setting of a randomized controlled trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
midu1发布了新的文献求助10
刚刚
xunxun完成签到,获得积分20
1秒前
BAQI流沙完成签到,获得积分10
2秒前
明理纸鹤发布了新的文献求助10
3秒前
阝火火完成签到,获得积分10
4秒前
5秒前
井莹完成签到,获得积分10
7秒前
8秒前
心态完成签到,获得积分10
9秒前
王科发布了新的文献求助20
11秒前
悦耳静枫发布了新的文献求助10
12秒前
13秒前
馒头师傅七老爷完成签到,获得积分10
13秒前
15秒前
汉朝老橙完成签到,获得积分10
15秒前
15秒前
Chen272完成签到,获得积分10
16秒前
唐吉应助SHENJINBING采纳,获得30
17秒前
Jie发布了新的文献求助10
17秒前
17秒前
王九八发布了新的文献求助10
18秒前
Berrymeng发布了新的文献求助10
19秒前
幸福果汁发布了新的文献求助10
19秒前
21秒前
萧水白应助宗磬采纳,获得10
21秒前
CodeCraft应助彭于晏采纳,获得10
22秒前
yanghua完成签到 ,获得积分10
22秒前
22秒前
悦耳静枫完成签到,获得积分10
23秒前
23秒前
在水一方应助卑微科研采纳,获得10
24秒前
24秒前
25秒前
zyfqpc应助yyyyou采纳,获得10
26秒前
zxcvbnm发布了新的文献求助10
26秒前
Berrymeng完成签到,获得积分10
26秒前
26秒前
子车茗应助Asteroid采纳,获得10
26秒前
28秒前
sbrcpyf发布了新的文献求助10
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270142
求助须知:如何正确求助?哪些是违规求助? 2909764
关于积分的说明 8350416
捐赠科研通 2580124
什么是DOI,文献DOI怎么找? 1403158
科研通“疑难数据库(出版商)”最低求助积分说明 655653
邀请新用户注册赠送积分活动 635044