Validating a biosignature-predicting placebo pill response in chronic pain in the settings of a randomized controlled trial

安慰剂 医学 慢性疼痛 随机对照试验 安慰剂反应 止痛药 麻醉 内科学 物理疗法 病理 替代医学
作者
Étienne Vachon‐Presseau,Taha Abdullah,Sara Berger,L. Q. Huang,James W. Griffith,Thomas J. Schnitzer,A. Vania Apkarian
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:163 (5): 910-922 被引量:10
标识
DOI:10.1097/j.pain.0000000000002450
摘要

Abstract The objective of this study is to validate a placebo pill response predictive model—a biosignature —that classifies chronic pain patients into placebo responders ( predicted-PTxResp ) and nonresponders ( predicted-PTxNonR ) and test whether it can dissociate placebo and active treatment responses. The model, based on psychological and brain functional connectivity, was derived in our previous study and blindly applied to current trial participants. Ninety-four chronic low back pain (CLBP) patients were classified into predicted-PTxResp or predicted-PTxNonR and randomized into no treatment, placebo treatment, or naproxen treatment. To monitor analgesia, back pain intensity was collected twice a day: 3 weeks baseline, 6 weeks of treatment, and 3 weeks of washout. Eighty-nine CLBP patients were included in the intent-to-treat analyses and 77 CLBP patients in the per-protocol analyses. Both analyses showed similar results. At the group level, the predictive model performed remarkably well, dissociating the separate effect sizes of pure placebo response and pure active treatment response and demonstrating that these effects interacted additively. Pain relief was about 15% stronger in the predicted-PTxResp compared with the predicted-PTxNonR receiving either placebo or naproxen, and the predicted-PTxNonR successfully isolated the active drug effect. At a single subject level, the biosignature better predicted placebo nonresponders, with poor accuracy. One component of the biosignature (dorsolateral prefrontal cortex–precentral gyrus functional connectivity) could be generalized across 3 placebo studies and in 2 different cohorts—CLBP and osteoarthritis pain patients. This study shows that a biosignature can predict placebo response at a group level in the setting of a randomized controlled trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
leaolf应助科研通管家采纳,获得20
1秒前
灰灰关注了科研通微信公众号
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
Dk应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
xss发布了新的文献求助20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助执着的玉米采纳,获得10
2秒前
2秒前
CHUNQ完成签到,获得积分10
2秒前
3秒前
隐形曼青应助迷人冥采纳,获得10
3秒前
zhutu完成签到,获得积分10
3秒前
Huang完成签到 ,获得积分0
4秒前
浮游应助why采纳,获得10
4秒前
霹雳侠完成签到,获得积分10
4秒前
大模型应助灵巧书蝶采纳,获得10
4秒前
火火完成签到,获得积分10
5秒前
Zu完成签到,获得积分10
5秒前
李2003发布了新的文献求助10
6秒前
LGJ完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
寒冷忆山发布了新的文献求助10
7秒前
科研通AI5应助白桦林泪采纳,获得10
8秒前
Feng完成签到,获得积分20
9秒前
霹雳侠发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600946
求助须知:如何正确求助?哪些是违规求助? 4010853
关于积分的说明 12417790
捐赠科研通 3690768
什么是DOI,文献DOI怎么找? 2034618
邀请新用户注册赠送积分活动 1067979
科研通“疑难数据库(出版商)”最低求助积分说明 952609