Validating a biosignature-predicting placebo pill response in chronic pain in the settings of a randomized controlled trial

安慰剂 医学 慢性疼痛 随机对照试验 安慰剂反应 止痛药 麻醉 内科学 物理疗法 病理 替代医学
作者
Étienne Vachon‐Presseau,Taha Abdullah,Sara Berger,L. Q. Huang,James W. Griffith,Thomas J. Schnitzer,A. Vania Apkarian
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:163 (5): 910-922 被引量:14
标识
DOI:10.1097/j.pain.0000000000002450
摘要

Abstract The objective of this study is to validate a placebo pill response predictive model—a biosignature —that classifies chronic pain patients into placebo responders ( predicted-PTxResp ) and nonresponders ( predicted-PTxNonR ) and test whether it can dissociate placebo and active treatment responses. The model, based on psychological and brain functional connectivity, was derived in our previous study and blindly applied to current trial participants. Ninety-four chronic low back pain (CLBP) patients were classified into predicted-PTxResp or predicted-PTxNonR and randomized into no treatment, placebo treatment, or naproxen treatment. To monitor analgesia, back pain intensity was collected twice a day: 3 weeks baseline, 6 weeks of treatment, and 3 weeks of washout. Eighty-nine CLBP patients were included in the intent-to-treat analyses and 77 CLBP patients in the per-protocol analyses. Both analyses showed similar results. At the group level, the predictive model performed remarkably well, dissociating the separate effect sizes of pure placebo response and pure active treatment response and demonstrating that these effects interacted additively. Pain relief was about 15% stronger in the predicted-PTxResp compared with the predicted-PTxNonR receiving either placebo or naproxen, and the predicted-PTxNonR successfully isolated the active drug effect. At a single subject level, the biosignature better predicted placebo nonresponders, with poor accuracy. One component of the biosignature (dorsolateral prefrontal cortex–precentral gyrus functional connectivity) could be generalized across 3 placebo studies and in 2 different cohorts—CLBP and osteoarthritis pain patients. This study shows that a biosignature can predict placebo response at a group level in the setting of a randomized controlled trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助平淡的冰巧采纳,获得10
2秒前
3秒前
李密完成签到 ,获得积分10
4秒前
白日做梦完成签到 ,获得积分10
4秒前
mm_zxh完成签到,获得积分10
4秒前
阿航完成签到,获得积分10
5秒前
小许发布了新的文献求助10
5秒前
一勺晚安z发布了新的文献求助10
6秒前
oxygen253完成签到,获得积分10
8秒前
10秒前
橙子爱吃火龙果完成签到 ,获得积分10
10秒前
西西完成签到 ,获得积分10
13秒前
mz11完成签到,获得积分10
13秒前
14秒前
14秒前
Tycoon发布了新的文献求助10
16秒前
李天王完成签到,获得积分10
16秒前
tanrui发布了新的文献求助10
17秒前
17秒前
大西瓜发布了新的文献求助10
18秒前
领导范儿应助现代雪柳采纳,获得10
20秒前
Akim应助Tycoon采纳,获得10
22秒前
Iceshadows发布了新的文献求助10
22秒前
sci大佬完成签到,获得积分10
23秒前
24秒前
闲鱼电脑完成签到,获得积分10
26秒前
26秒前
28秒前
28秒前
32秒前
osteoclast发布了新的文献求助10
33秒前
现代雪柳发布了新的文献求助10
33秒前
纾缓完成签到 ,获得积分10
34秒前
彭于晏应助Eaven采纳,获得10
34秒前
binz完成签到,获得积分10
35秒前
正常发布了新的文献求助10
35秒前
Miranda发布了新的文献求助10
35秒前
陈彦早发布了新的文献求助10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160