已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic hierarchical collaborative optimisation for process planning and scheduling using crowdsourcing strategies

众包 调度(生产过程) 生产计划 卡鲁什-库恩-塔克条件 工业工程 计算机科学 运筹学 工程类 过程管理 生产(经济) 运营管理 数学优化 数学 万维网 宏观经济学 经济
作者
Yujie Ma,Gang Du,Yingying Zhang
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:60 (8): 2404-2424 被引量:7
标识
DOI:10.1080/00207543.2021.1892230
摘要

Platform-based crowdsourcing manufacturing has recently garnered wide attention as it is a business model that facilitates economies of scale and cost efficiency in production. The inherent coupling of process planning and production scheduling (PPPS) in a platform-based crowdsourcing manufacturing environment necessitates collaborative optimisation of PPPS decisions. Existing research that assumes PPPS decisions are integrated into one static single-level optimisation problem becomes no longer applicable with the arrival of the crowdsourcing mode. This paper presents a dynamic hierarchical collaborative optimisation (DHCO) mechanism that considers a process planning to interact with scheduling according to the optimal decision of the open manufacturing platform. A bilevel mixed 0-1 nonlinear programming model is established with the platform acting as the leader and the manufacturing enterprises serving as the follower. It is solved by a nested genetic algorithm (NGA). A case study of a part family is presented to illustrate feasibility of DHCO. Through comparative experiments, it is found that integrating crowdsourcing strategies into process planning activities is advisable for a platform to increase competitive advantages. The proposed model can manage well the conflict and collaboration between PPPS and balances the benefits of a platform with the manufacturing enterprise impacts triggered by planning activities. Abbreviations: DHCO: Dynamic Hierarchical Collaborative Optimisation; IOM: Integrated Optimisation Method; KKT: Karush-Kuhn-Tucker; MNL: Multinomial Logit; NGA: Nested Genetic Algorithm; PFI: Process Flexibility Index; PPPS: Process Planning and Production Scheduling; PSI: Process Similarity Index; TOM: Two-stage Optimisation Method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈醒醒完成签到,获得积分10
1秒前
yyy完成签到 ,获得积分10
2秒前
2秒前
4秒前
6秒前
mapa完成签到,获得积分10
9秒前
11秒前
Abiu发布了新的文献求助10
12秒前
ED应助无辜的如波采纳,获得10
12秒前
13秒前
nana完成签到 ,获得积分10
13秒前
柒_l发布了新的文献求助10
15秒前
cc完成签到 ,获得积分10
15秒前
活力科研人完成签到,获得积分10
16秒前
sugar完成签到,获得积分10
17秒前
18秒前
刀锋完成签到,获得积分10
19秒前
26秒前
斯文败类应助霸气的金鱼采纳,获得10
26秒前
lyon完成签到 ,获得积分10
26秒前
JacekYu完成签到 ,获得积分10
27秒前
1124362229完成签到,获得积分20
28秒前
31秒前
m1nt完成签到,获得积分0
31秒前
35秒前
小树完成签到 ,获得积分10
38秒前
vantrung完成签到,获得积分10
39秒前
zhang完成签到 ,获得积分10
40秒前
念姬发布了新的文献求助10
41秒前
42秒前
GGBoy完成签到 ,获得积分10
45秒前
豌豆发布了新的文献求助10
46秒前
金蛋蛋完成签到 ,获得积分10
46秒前
脑洞疼应助小树采纳,获得10
47秒前
友好冥王星完成签到 ,获得积分10
47秒前
Stroeve完成签到,获得积分10
49秒前
从容甜瓜完成签到 ,获得积分10
52秒前
资格丘二完成签到 ,获得积分10
52秒前
53秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963128
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144752
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803621