Dynamic hierarchical collaborative optimisation for process planning and scheduling using crowdsourcing strategies

众包 调度(生产过程) 生产计划 卡鲁什-库恩-塔克条件 工业工程 计算机科学 运筹学 工程类 过程管理 生产(经济) 运营管理 数学优化 数学 万维网 宏观经济学 经济
作者
Yujie Ma,Gang Du,Yingying Zhang
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:60 (8): 2404-2424 被引量:7
标识
DOI:10.1080/00207543.2021.1892230
摘要

Platform-based crowdsourcing manufacturing has recently garnered wide attention as it is a business model that facilitates economies of scale and cost efficiency in production. The inherent coupling of process planning and production scheduling (PPPS) in a platform-based crowdsourcing manufacturing environment necessitates collaborative optimisation of PPPS decisions. Existing research that assumes PPPS decisions are integrated into one static single-level optimisation problem becomes no longer applicable with the arrival of the crowdsourcing mode. This paper presents a dynamic hierarchical collaborative optimisation (DHCO) mechanism that considers a process planning to interact with scheduling according to the optimal decision of the open manufacturing platform. A bilevel mixed 0-1 nonlinear programming model is established with the platform acting as the leader and the manufacturing enterprises serving as the follower. It is solved by a nested genetic algorithm (NGA). A case study of a part family is presented to illustrate feasibility of DHCO. Through comparative experiments, it is found that integrating crowdsourcing strategies into process planning activities is advisable for a platform to increase competitive advantages. The proposed model can manage well the conflict and collaboration between PPPS and balances the benefits of a platform with the manufacturing enterprise impacts triggered by planning activities. Abbreviations: DHCO: Dynamic Hierarchical Collaborative Optimisation; IOM: Integrated Optimisation Method; KKT: Karush-Kuhn-Tucker; MNL: Multinomial Logit; NGA: Nested Genetic Algorithm; PFI: Process Flexibility Index; PPPS: Process Planning and Production Scheduling; PSI: Process Similarity Index; TOM: Two-stage Optimisation Method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯可发布了新的文献求助10
1秒前
3秒前
搜集达人应助有魅力的井采纳,获得10
3秒前
zhou完成签到,获得积分10
3秒前
科研通AI2S应助黄文博采纳,获得10
5秒前
乘风破浪完成签到 ,获得积分10
5秒前
peekaboo完成签到,获得积分10
5秒前
6秒前
思琦吖发布了新的文献求助10
6秒前
义气萝卜头完成签到 ,获得积分10
6秒前
Balance Man完成签到 ,获得积分10
12秒前
斯可完成签到,获得积分10
14秒前
小谦完成签到,获得积分20
15秒前
17秒前
17秒前
17秒前
再吃一颗苹果完成签到,获得积分10
18秒前
甜蜜的阳光完成签到 ,获得积分10
22秒前
22秒前
祗想静静嘚完成签到 ,获得积分10
22秒前
樱桃完成签到,获得积分10
23秒前
万能图书馆应助刘善行采纳,获得30
24秒前
科研小民工应助A_Caterpillar采纳,获得100
24秒前
Kyrie完成签到 ,获得积分10
25秒前
甄簿厝发布了新的文献求助10
26秒前
SciGPT应助专一的依秋采纳,获得30
29秒前
29秒前
Zzzzan发布了新的文献求助10
30秒前
32秒前
33秒前
个木发布了新的文献求助10
33秒前
33秒前
Lucas应助AFong采纳,获得10
34秒前
甄簿厝完成签到,获得积分10
34秒前
YHL发布了新的文献求助10
35秒前
mirroring完成签到,获得积分10
35秒前
赘婿应助漂亮幻莲采纳,获得10
36秒前
悲伤西米露应助个木采纳,获得10
36秒前
善良寄灵发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792