亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Traffic Signal Control With Reinforcement Learning Based on Region-Aware Cooperative Strategy

强化学习 计算机科学 交叉口(航空) 排队 状态空间 流量(计算机网络) 网格 交通拥挤 分布式计算 人工智能 工程类 计算机网络 数学 统计 航空航天工程 几何学 运输工程
作者
Wang Min,Libing Wu,Jianxin Li,Lingjuan He
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 6774-6785 被引量:10
标识
DOI:10.1109/tits.2021.3062072
摘要

With the increase of private cars, traditional traffic signal control methods cannot alleviate the traffic congestion problem. Reinforcement learning (RL) is increasingly used in adaptive traffic light control. As urban traffic becomes more complex, reinforcement learning algorithms solely based on value or policy are not suitable for such scenarios. Moreover, the centralized method does not show a good effect on the multi-intersection, in particular, when the traffic flow is in the high-dimensional continuous state space. In this article, we propose a decentralized framework based on the advantage actor-critic (A2C) algorithm by assigning global control to each local RL agent or intersection. A2C algorithm involved in this article is a product of combining policy function and value function, which has good convergence ability and can be applied to continuous state space. The decentralized methods may put a new challenge: from the perspective of each local agent, the environment becomes partially observable. We overcome this problem by putting forward a region-aware cooperative strategy (RACS) based on graph attention network (GAT), which can incorporate the spatial information of the surrounding agents. We carry out experiments on synthetic traffic grid and real-world traffic network of Monaco city to compare with the existing A2C and Q-learning algorithms. Experimental results confirm that our RACS method has a shorter queue length and less waiting time than the two existing algorithms, and can reduce the total vehicle travel time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
14秒前
tiantian完成签到 ,获得积分10
16秒前
顾矜应助zzb采纳,获得10
17秒前
21秒前
zzb完成签到,获得积分10
25秒前
27秒前
zzb发布了新的文献求助10
27秒前
35秒前
37秒前
默己完成签到 ,获得积分10
41秒前
小张真的困啦完成签到,获得积分10
48秒前
null应助小张真的困啦采纳,获得10
52秒前
52秒前
1分钟前
1分钟前
皮皮发布了新的文献求助10
1分钟前
小二郎应助顾绯采纳,获得10
1分钟前
1分钟前
1分钟前
Ava应助皮皮采纳,获得10
1分钟前
1分钟前
1分钟前
Tingshuo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Tingshuo完成签到,获得积分10
1分钟前
皮皮完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
顾绯发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ariel完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
合适的如天完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091