Traffic Signal Control With Reinforcement Learning Based on Region-Aware Cooperative Strategy

强化学习 计算机科学 交叉口(航空) 排队 状态空间 流量(计算机网络) 网格 交通拥挤 分布式计算 人工智能 工程类 计算机网络 数学 统计 航空航天工程 几何学 运输工程
作者
Wang Min,Libing Wu,Jianxin Li,Lingjuan He
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 6774-6785 被引量:10
标识
DOI:10.1109/tits.2021.3062072
摘要

With the increase of private cars, traditional traffic signal control methods cannot alleviate the traffic congestion problem. Reinforcement learning (RL) is increasingly used in adaptive traffic light control. As urban traffic becomes more complex, reinforcement learning algorithms solely based on value or policy are not suitable for such scenarios. Moreover, the centralized method does not show a good effect on the multi-intersection, in particular, when the traffic flow is in the high-dimensional continuous state space. In this article, we propose a decentralized framework based on the advantage actor-critic (A2C) algorithm by assigning global control to each local RL agent or intersection. A2C algorithm involved in this article is a product of combining policy function and value function, which has good convergence ability and can be applied to continuous state space. The decentralized methods may put a new challenge: from the perspective of each local agent, the environment becomes partially observable. We overcome this problem by putting forward a region-aware cooperative strategy (RACS) based on graph attention network (GAT), which can incorporate the spatial information of the surrounding agents. We carry out experiments on synthetic traffic grid and real-world traffic network of Monaco city to compare with the existing A2C and Q-learning algorithms. Experimental results confirm that our RACS method has a shorter queue length and less waiting time than the two existing algorithms, and can reduce the total vehicle travel time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人间烟火发布了新的文献求助10
刚刚
2秒前
DD发布了新的文献求助10
4秒前
5秒前
Persist发布了新的文献求助10
6秒前
6秒前
554802336完成签到,获得积分20
7秒前
9秒前
9秒前
9秒前
10秒前
orixero应助小李子采纳,获得10
11秒前
日出发布了新的文献求助10
14秒前
人间烟火完成签到,获得积分10
15秒前
Yy发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
19秒前
小鹦鹉完成签到 ,获得积分10
20秒前
wang完成签到,获得积分10
20秒前
小田完成签到,获得积分10
22秒前
小鹦鹉关注了科研通微信公众号
25秒前
28秒前
30秒前
31秒前
bkagyin应助废式脂肪采纳,获得10
32秒前
lili发布了新的文献求助10
33秒前
34秒前
春花发布了新的文献求助10
37秒前
38秒前
38秒前
40秒前
彭于晏应助自觉向秋采纳,获得10
41秒前
ZhX完成签到,获得积分10
42秒前
小冰发布了新的文献求助10
44秒前
44秒前
ding应助August采纳,获得10
47秒前
废式脂肪发布了新的文献求助10
50秒前
义气谷兰发布了新的文献求助10
50秒前
50秒前
52秒前
小冰完成签到,获得积分10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976418
求助须知:如何正确求助?哪些是违规求助? 3520512
关于积分的说明 11203586
捐赠科研通 3257127
什么是DOI,文献DOI怎么找? 1798594
邀请新用户注册赠送积分活动 877804
科研通“疑难数据库(出版商)”最低求助积分说明 806523