Traffic Signal Control With Reinforcement Learning Based on Region-Aware Cooperative Strategy

强化学习 计算机科学 交叉口(航空) 排队 状态空间 流量(计算机网络) 网格 交通拥挤 分布式计算 人工智能 工程类 计算机网络 数学 统计 航空航天工程 几何学 运输工程
作者
Wang Min,Libing Wu,Jianxin Li,Lingjuan He
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 6774-6785 被引量:10
标识
DOI:10.1109/tits.2021.3062072
摘要

With the increase of private cars, traditional traffic signal control methods cannot alleviate the traffic congestion problem. Reinforcement learning (RL) is increasingly used in adaptive traffic light control. As urban traffic becomes more complex, reinforcement learning algorithms solely based on value or policy are not suitable for such scenarios. Moreover, the centralized method does not show a good effect on the multi-intersection, in particular, when the traffic flow is in the high-dimensional continuous state space. In this article, we propose a decentralized framework based on the advantage actor-critic (A2C) algorithm by assigning global control to each local RL agent or intersection. A2C algorithm involved in this article is a product of combining policy function and value function, which has good convergence ability and can be applied to continuous state space. The decentralized methods may put a new challenge: from the perspective of each local agent, the environment becomes partially observable. We overcome this problem by putting forward a region-aware cooperative strategy (RACS) based on graph attention network (GAT), which can incorporate the spatial information of the surrounding agents. We carry out experiments on synthetic traffic grid and real-world traffic network of Monaco city to compare with the existing A2C and Q-learning algorithms. Experimental results confirm that our RACS method has a shorter queue length and less waiting time than the two existing algorithms, and can reduce the total vehicle travel time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Milou完成签到,获得积分10
1秒前
1秒前
老阎应助科研通管家采纳,获得30
1秒前
orixero应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研白菜白完成签到,获得积分10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得20
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研乞丐应助科研通管家采纳,获得20
2秒前
jjj应助科研通管家采纳,获得20
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得30
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
zpt完成签到,获得积分10
3秒前
爱学习的瑞瑞子完成签到 ,获得积分10
3秒前
pauchiu完成签到,获得积分0
3秒前
jay完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
xixi完成签到 ,获得积分10
6秒前
杜熙完成签到,获得积分10
6秒前
8秒前
9秒前
gougoutu发布了新的文献求助10
10秒前
liugm发布了新的文献求助10
10秒前
泡沫发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066