已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image Reflection Removal via Contextual Feature Fusion Pyramid and Task-Driven Regularization

计算机科学 人工智能 鉴别器 模式识别(心理学) 计算机视觉 卷积神经网络 特征(语言学) 棱锥(几何) 数学 几何学 语言学 电信 探测器 哲学
作者
Yuenan Li,Qixin Yan,Kuangshi Zhang,Haoyu Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 553-565 被引量:3
标识
DOI:10.1109/tcsvt.2021.3067502
摘要

In this paper, we propose a deep neural network for single image reflection removal. More specifically, we design a convolutional-grid module and take it as the building block of a feature fusion pyramid. The module leverages the combination effect of the grid topology to create a rich ensemble of receptive fields. Embedding the modules into a pyramidal architecture further expands the coverage of receptive fields. Another benefit of the pyramid is to fuse the multi-scale features learned by the modules locating at the ascending and descending pathways. The rich diversity of features helps the neural network analyze the contexts around overlapping objects at various spatial ranges and harvest the cues for layer separation. The proposed work also exploits useful semantic cues from the hyper-column descriptors generated by a pre-trained VGG-19 model to reduce the ambiguity of layer separation. In light of the low correlation between background and reflection layers, we design a channel-correlation based conditional discriminator to penalize residual reflection. The discriminator uses channel-wise attention to screen the features that can distinguish real background images from estimated ones. This paper also presents a task-driven regularization strategy. The high sensitivity of semantic segmentation to reflection is exploited for assessing the completeness of reflection removal. Training with this regularization strategy can boost the performance of both reflection removal and high-level task. The comparison against state-of-the-art algorithms on four public benchmark datasets demonstrates that this work exhibits superior performance in handling the complex reflections in wild scenarios. The proposed network architecture is also applicable to haze removal, which is another ill-posed layer separation problem, and has shown encouraging performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助我爱蓝胖子采纳,获得10
刚刚
xzy998应助菜菜采纳,获得10
4秒前
4秒前
Solomon完成签到 ,获得积分0
7秒前
阿君发布了新的文献求助10
9秒前
10秒前
okk发布了新的文献求助10
10秒前
囿于昼夜完成签到,获得积分10
11秒前
11秒前
12秒前
15秒前
19秒前
沐沐心完成签到 ,获得积分10
19秒前
我的苞娜公主完成签到,获得积分10
22秒前
852应助孤独靖柏采纳,获得10
24秒前
斯文败类应助大力的无声采纳,获得10
24秒前
我爱蓝胖子完成签到,获得积分10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得30
27秒前
大模型应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
ff应助科研通管家采纳,获得10
28秒前
28秒前
笨笨西牛完成签到 ,获得积分10
29秒前
30秒前
30秒前
32秒前
隐形曼青应助鸿儒采纳,获得10
33秒前
于雷是我发布了新的文献求助10
35秒前
阿君完成签到,获得积分20
35秒前
孤独靖柏发布了新的文献求助10
36秒前
xuxu完成签到,获得积分10
39秒前
华仔应助温暖静柏采纳,获得10
47秒前
47秒前
李健应助呼噜采纳,获得10
48秒前
Qing发布了新的文献求助10
50秒前
CipherSage应助鸿儒采纳,获得10
50秒前
Qing完成签到,获得积分10
1分钟前
1分钟前
脆脆鲨发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838