Predicting How CNN Training Time Changes on Various Mini-Batch Sizes by Considering Convolution Algorithms and Non-GPU Time

卷积(计算机科学) 计算机科学 培训(气象学) 算法 并行计算 执行时间 计算科学 人工智能 计算机图形学(图像) 人工神经网络 物理 气象学
作者
Peter Bryzgalov,Toshiyuki Maeda,Yutaro Shigeto
标识
DOI:10.1145/3452412.3462750
摘要

Convolutional neural networks (CNN) drive successful machine learning applications in a growing number of areas. However, training a CNN may take a massive amount of time and expensive high-end GPU resources. CNN training time may change significantly depending on training parameters and GPU type. Therefore, an accurate estimation of CNN training time can help in selecting training parameters and GPU type, which minimise training time and cost. We focus on one training parameter, which has a particularly significant effect on the training time-the mini-batch size. Predicting CNN training time on a wide range of mini-batch sizes is challenging because a small variation in a mini-batch size can change the selection of convolution algorithms and cause abrupt changes in training time, which is also affected by non-GPU operations. This paper shows our approach to predicting CNN training time over a wide range of mini-batch sizes by utilising a proxy application to benchmark convolutional and dense layers and considering non-GPU time. In contrast to prior works, which build one prediction model for all possible CNN configurations, we build simple models that would each make highly accurate predictions for one particular CNN. We evaluate our approach using several CNN samples and GPU types and demonstrate that it can yield highly accurate predictions on unseen mini-batch sizes with a mean percentage error averaged over all experiments equal to 1.38% (the minimum is 0.21% and the maximum is 5.01%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫名其妙完成签到,获得积分0
刚刚
Zzz发布了新的文献求助10
1秒前
1秒前
带头大哥应助gy79210采纳,获得200
1秒前
Aoevr完成签到,获得积分10
2秒前
2秒前
喜悦鹤轩发布了新的文献求助10
2秒前
张于小丸子完成签到 ,获得积分10
2秒前
hxy发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
3秒前
甜菜完成签到,获得积分10
3秒前
新八发布了新的文献求助10
4秒前
nan完成签到,获得积分20
6秒前
培a发布了新的文献求助10
6秒前
小蘑菇应助想得开居士采纳,获得10
6秒前
Zz发布了新的文献求助10
7秒前
高兴翠绿完成签到,获得积分10
7秒前
8秒前
8秒前
xx发布了新的文献求助10
9秒前
罐子完成签到,获得积分10
10秒前
Weiyuan完成签到,获得积分10
11秒前
JamesPei应助LYDZ1采纳,获得10
11秒前
11秒前
所所应助Ff采纳,获得10
11秒前
Xiaobai2025关注了科研通微信公众号
12秒前
Orange应助Zephyr采纳,获得10
13秒前
13秒前
天冷了hhhdh应助123采纳,获得20
13秒前
13秒前
古德谷德发布了新的文献求助10
13秒前
机灵的友容完成签到,获得积分10
14秒前
14秒前
14秒前
想得开居士完成签到,获得积分20
14秒前
Edsorn完成签到,获得积分10
14秒前
wanjunhao完成签到,获得积分10
15秒前
852应助郭小胖14采纳,获得10
15秒前
张小明发布了新的文献求助10
16秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328460
求助须知:如何正确求助?哪些是违规求助? 2958479
关于积分的说明 8590607
捐赠科研通 2636706
什么是DOI,文献DOI怎么找? 1443184
科研通“疑难数据库(出版商)”最低求助积分说明 668564
邀请新用户注册赠送积分活动 655786