Zero-shot learning for compound fault diagnosis of bearings

断层(地质) 计算机科学 卷积神经网络 陷入故障 人工智能 故障指示器 深度学习 欧几里德距离 故障覆盖率 模式识别(心理学) 数据挖掘 故障检测与隔离 算法 实时计算 工程类 地震学 地质学 电气工程 电子线路 执行机构
作者
Juan Xu,Long Zhou,Weihua Zhao,Yuqi Fan,Xu Ding,Xiaohui Yuan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:190: 116197-116197 被引量:109
标识
DOI:10.1016/j.eswa.2021.116197
摘要

Due to the concurrency and coupling of various types of faults, and the number of possible fault modes grows exponentially, thereby compound fault diagnosis is a difficult problem in bearing fault diagnosis. The existing deep learning models can extract fault features when there are a large number of labeled compound fault samples. In industrial scenarios, collecting and labeling sufficient compound fault samples are unpractical. Using the model trained on single fault samples to identify unknown compound faults is challenging and innovative. To address this problem, we propose a Zero-shot Learning Compound Fault Diagnosis Model of bearings (ZLCFDM). We design an encoding method to express the semantics of single faults and compound faults according to the fault characteristics. A convolutional neural network is developed to extract the time–frequency features of the compound fault signal. Then we embed the semantic feature of the fault into the visual space of the fault data. The Euclidean distance is used to measure the distance between the signal features and the semantic features of the compound faults to identify the categories of unknown compound faults. To validate the proposed method, we conduct experiments on a self-built testbed. The results demonstrate that the accuracy of identifying compound fault reached 77.73% when the model was trained without any compound fault samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tera完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
2秒前
2秒前
学海无涯完成签到,获得积分10
2秒前
jiaao完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
酷炫的平蝶完成签到,获得积分20
3秒前
serein完成签到,获得积分10
3秒前
合法合规发布了新的文献求助10
3秒前
3秒前
4秒前
深情安青应助季博常采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
汉堡包应助了尘采纳,获得10
5秒前
5秒前
子小雨记完成签到,获得积分20
5秒前
zzzxhhr完成签到,获得积分10
5秒前
现代的大叔完成签到,获得积分20
5秒前
123发布了新的文献求助10
5秒前
5秒前
超级美少女战士完成签到,获得积分10
6秒前
xiao完成签到,获得积分10
6秒前
KPL452B发布了新的文献求助10
7秒前
羊肉泡馍完成签到,获得积分10
7秒前
7秒前
情怀应助gwfew采纳,获得10
7秒前
7秒前
NexusExplorer应助haihai采纳,获得10
7秒前
8秒前
南木完成签到,获得积分20
8秒前
搜集达人应助michael采纳,获得10
8秒前
NexusExplorer应助热情的觅云采纳,获得10
8秒前
小二郎应助孙伟伟采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530