已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction

一般化 计算机科学 药物基因组学 一致性(知识库) 学习迁移 标记数据 药物反应 分布(数学) 领域(数学分析) 人工智能 机器学习 数据挖掘 药品 数学 生物信息学 医学 生物 数学分析 精神科
作者
Hossein Sharifi-Noghabi,Parsa Alamzadeh Harjandi,Olga Zolotareva,Colin C. Collins,Martin Ester
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (11): 962-972 被引量:21
标识
DOI:10.1038/s42256-021-00408-w
摘要

Data discrepancy between preclinical and clinical datasets poses a major challenge for accurate drug response prediction based on gene expression data. Different methods of transfer learning have been proposed to address such data discrepancy in drug response prediction for different cancers. These methods generally use cell lines as source domains, and patients, patient-derived xenografts or other cell lines as target domains; however, it is assumed that the methods have access to the target domain during training or fine-tuning, and they can only take labelled source domains as input. The former is a strong assumption that is not satisfied during deployment of these models in the clinic, whereas the latter means these methods rely on labelled source domains that are of limited size. To avoid these assumptions, we formulate drug response prediction in cancer as an out-of-distribution generalization problem, which does not assume that the target domain is accessible during training. Moreover, to exploit unlabelled source domain data—which tends to be much more plentiful than labelled data—we adopt a semi-supervised approach. We propose Velodrome, a semi-supervised method of out-of-distribution generalization that takes labelled and unlabelled data from different resources as input and makes generalizable predictions. Velodrome achieves this goal by introducing an objective function that combines a supervised loss for accurate prediction, an alignment loss for generalization and a consistency loss to incorporate unlabelled samples. Our experimental results demonstrate that Velodrome outperforms state-of-the-art pharmacogenomics and transfer learning baselines on cell lines, patient-derived xenografts and patients. Finally, we showed that Velodrome models generalize to different tissue types that were well-represented, under-represented or completely absent in the training data. Overall, our results suggest that Velodrome may guide precision oncology more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘橘橘子皮完成签到 ,获得积分10
2秒前
3秒前
幸福大白发布了新的文献求助30
3秒前
无花果应助zsd采纳,获得10
4秒前
超帅的薇姐完成签到 ,获得积分10
5秒前
6秒前
乔达摩悉达多完成签到 ,获得积分10
9秒前
WJ发布了新的文献求助10
9秒前
glowworm完成签到,获得积分10
9秒前
glowworm发布了新的文献求助30
12秒前
g143发布了新的文献求助20
12秒前
12秒前
爱静静应助kdjm688采纳,获得10
12秒前
完美世界应助rachel-yue采纳,获得10
13秒前
和谐悟空发布了新的文献求助20
14秒前
16秒前
17秒前
忙碌的咖啡完成签到,获得积分10
18秒前
幸福大白发布了新的文献求助10
19秒前
在水一方应助小绵羊采纳,获得10
19秒前
岂巳完成签到,获得积分10
20秒前
20秒前
兴奋巧凡发布了新的文献求助10
20秒前
shjyang完成签到,获得积分10
21秒前
23秒前
鲜于元龙发布了新的文献求助10
24秒前
25秒前
搜第一完成签到 ,获得积分10
25秒前
25秒前
王云豆发布了新的文献求助10
25秒前
Mu完成签到,获得积分10
26秒前
迷路的初柔完成签到 ,获得积分10
27秒前
28秒前
阿源发布了新的文献求助10
29秒前
30秒前
Wing完成签到 ,获得积分10
30秒前
31秒前
34秒前
研友_VZG7GZ应助王云豆采纳,获得10
34秒前
爱静静应助kdjm688采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544212
求助须知:如何正确求助?哪些是违规求助? 3121381
关于积分的说明 9346796
捐赠科研通 2819557
什么是DOI,文献DOI怎么找? 1550292
邀请新用户注册赠送积分活动 722414
科研通“疑难数据库(出版商)”最低求助积分说明 713258