电催化剂
塔菲尔方程
分解水
材料科学
析氧
氢氧化物
化学工程
电解质
电流密度
镍
催化作用
层状双氢氧化物
纳米技术
电极
电化学
化学
冶金
物理化学
有机化学
工程类
物理
光催化
量子力学
作者
Xiaoge Li,Cong Liu,Zhitang Fang,Lin Xu,Chunliang Lu,Wenhua Hou
出处
期刊:Small
[Wiley]
日期:2021-11-12
卷期号:18 (2)
被引量:89
标识
DOI:10.1002/smll.202104354
摘要
Water splitting is a promising sustainable technology to produce high purity hydrogen, but its commercial application remains a giant challenge due to the kinetically sluggish oxygen evolution reaction (OER). In this work, a time- and energy-saving approach to directly grow NiFe-layered double hydroxide (NiFe-LDH) nanosheets on nickel foam under ambient temperature and pressure is reported. These NiFe-LDH nanosheets are vertically rooted in nickel foam and interdigitated together to form a highly porous array, leading to numerous exposed active sites, reduced resistance of charge/mass transportation and enhanced mechanical stability. As self-supported electrocatalyst, the representative sample (NF@NiFe-LDH-1.5-4) shows an excellent large-current-density catalytic activity for OER in alkaline electrolyte, requiring low overpotentials of 190 and 220 mV to reach the current densities of 100 and 657 mA cm-2 with a Tafel slope of 38.1 mV dec-1 . In addition, NF@NiFe-LDH-1.5-4 as an overall water splitting electrocatalyst can stably achieve a large current density of 200 mA cm-2 over 300 h at a low cell voltage of 1.83 V, meeting the requirement of industrial hydrogen production. This exceedingly simple and ultrafast synthesis of low-cost and highly active large-current-density OER electrocatalysts can propel the commercialization of hydrogen producing technology via water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI