材料科学
铁电性
极化(电化学)
薄膜
凝聚态物理
激发
相(物质)
复合材料
光电子学
电介质
纳米技术
物理
化学
量子力学
物理化学
作者
Le Van Lich,Tinh Quoc Bui,Takahiro Shimada,Takayuki Kitamura,Hue Dang Thi Hong,Trong‐Giang Nguyen,Van‐Hai Dinh
标识
DOI:10.1002/adts.202100370
摘要
Abstract A phase field model for nonlinearly graded ferroelectric thin films is developed based on the Ginzburg–Landau theory. The developed phase field model is validated by comparing simulated results and available experiment data. Via phase field simulations, effects of gradient index on polarization field and electromechanical response are systematically investigated. Anomalously large electromechanical responses are explored in nonlinearly graded ferroelectric thin films made of BaSr x TiO 3 , where SrTiO 3 mole fraction varies across the film thickness according to power‐law relationships. In addition, a large gradient of polarization can be stabilized in graded ferroelectric thin films, where both magnitude and gradient of polarization can be manipulated by controlling the gradient index of thin films. The remarkable enhancement of electromechanical properties originates from the large gradient of polarization in thin films, which makes the polarization field more susceptible to external excitation. An optimal gradient index for maximizing the electromechanical response is also identified. Furthermore, a consideration of energy properties of graded thin films suggests that both energy storage density and charge–discharge efficiency increase with increasing gradient index of thin films.
科研通智能强力驱动
Strongly Powered by AbleSci AI