Dislocations in 4 H ‐ SiC Substrates and Epilayers

材料科学 碳化硅 位错 成核 叠加断层 结晶学 攀登 光电子学 凝聚态物理 复合材料 化学 物理 工程类 航空航天工程 有机化学
作者
Balaji Raghothamachar,Michael Dudley
标识
DOI:10.1002/9783527824724.ch7
摘要

Silicon carbide (primarily 4H-SiC) is a wide energy bandgap semiconductor highly suitable for various high-temperature and high-power electronic technologies due to its large energy bandgap, thermal conductivity, and breakdown voltage among other outstanding properties. Large area high-quality single crystal wafers are the chief requirement to realize the potential of silicon carbide for these applications. The lowering of defect densities particularly dislocations in silicon carbide crystals has been an ongoing effort and considerable advances have been made in silicon carbide single crystal growth technology through understanding of growth mechanisms and defect behavior. The primary characterization technique employed is synchrotron X-ray topography, both white beam and monochromatic, which has played a pivotal role in imaging and analyzing defect behavior. Micropipes, threading screw and mixed dislocations, basal plane and threading edge dislocations, and their interactions are discussed along with their behavior during bulk and thin film crystal growth. Dislocation multiplication by the hopping Frank–Read source mechanism, interactions between threading c , a , and c + a dislocations and deflections of threading dislocations resulting in stacking fault formation, relationship between basal plane dislocation distribution and basal plane bending in bulk crystals have been observed and analyzed. Some insights into dislocation behavior during early stages of PVT growth have been obtained from analysis of thin layers of PVT-grown material on seeds. In epilayers, enhanced understanding of the conversion of basal plane dislocations into threading edge dislocations, dislocation susceptibility to recombination enhanced dislocation glide, relaxation of epilayers and the nucleation mechanism of dislocation half-loop arrays, and the effect of surface scratches are described.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助元宝是只傻猫采纳,获得30
1秒前
小鲨鱼发布了新的文献求助10
1秒前
1秒前
1秒前
幸福的千琴完成签到,获得积分10
2秒前
2秒前
Loemteigaan完成签到,获得积分10
2秒前
3秒前
无极微光应助lisbattery采纳,获得20
3秒前
深情代芙完成签到,获得积分10
3秒前
wyy关注了科研通微信公众号
4秒前
smottom应助xh采纳,获得10
4秒前
拾新发布了新的文献求助10
4秒前
saturn完成签到,获得积分20
4秒前
5秒前
科研通AI6.1应助feiyan采纳,获得10
5秒前
赘婿应助傻傻的含双采纳,获得10
5秒前
bingdaocha完成签到,获得积分10
6秒前
liu95完成签到 ,获得积分10
7秒前
神奇的海螺完成签到 ,获得积分10
8秒前
得鹿梦鱼发布了新的文献求助10
8秒前
小鱼发布了新的文献求助10
8秒前
金元宝发布了新的文献求助10
8秒前
合适皮皮虾给合适皮皮虾的求助进行了留言
8秒前
8秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
9秒前
笨笨山芙应助科研通管家采纳,获得10
9秒前
笨笨山芙应助科研通管家采纳,获得10
9秒前
呼噜噜发布了新的文献求助10
9秒前
萝卜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
笨笨山芙应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
ran清发布了新的文献求助20
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
萝卜应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760209
求助须知:如何正确求助?哪些是违规求助? 5523899
关于积分的说明 15396860
捐赠科研通 4897047
什么是DOI,文献DOI怎么找? 2634010
邀请新用户注册赠送积分活动 1582088
关于科研通互助平台的介绍 1537582