The Value of Price Discrimination in Large Social Networks

价格歧视 微观经济学 价值(数学) 经济 外部性 判别式 网络效应 社交网络(社会语言学) 计量经济学 透明度(行为) 计算机科学 人工智能 社会化媒体 机器学习 计算机安全 万维网
作者
Jiali Huang,Ankur Mani,Zizhuo Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4454-4477 被引量:13
标识
DOI:10.1287/mnsc.2021.4108
摘要

We study the value of price discrimination in large social networks. Recent trends in industry suggest that, increasingly, firms are using information about social network to offer personalized prices to individuals based upon their positions in the social network. In the presence of positive network externalities, firms aim to increase their profits by offering discounts to influential individuals that can stimulate consumption by other individuals at a higher price. However, the lack of transparency in discriminative pricing may reduce consumer satisfaction and create mistrust. Recent research focuses on the computation of optimal prices in deterministic networks under positive externalities. We want to answer the question of how valuable such discriminative pricing is. We find, surprisingly, that the value of such pricing policies (increase in profits resulting from price discrimination) in very large random networks are often not significant. Particularly, for Erdös–Renyi random networks, we provide the exact rates at which this value decays in the size of the networks for different ranges of network densities. Our results show that there is a nonnegligible value of price discrimination for a small class of moderate-sized Erdös–Renyi random networks. We also present a framework to obtain bounds on the value of price discrimination for random networks with general degree distributions and apply the framework to obtain bounds on the value of price discrimination in power-law networks. Our numerical experiments demonstrate our results and suggest that our results are robust to changes in the model of network externalities. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苜久久完成签到,获得积分10
刚刚
dm发布了新的文献求助10
刚刚
1秒前
领导范儿应助zyk采纳,获得10
1秒前
2秒前
温暖的沛凝完成签到 ,获得积分10
3秒前
CipherSage应助秋秋采纳,获得10
3秒前
ZAPAR发布了新的文献求助10
6秒前
7秒前
8秒前
sciforce完成签到,获得积分10
8秒前
Liufgui应助会飞的鱼采纳,获得30
9秒前
在水一方应助小秋采纳,获得10
11秒前
ronnie发布了新的文献求助10
12秒前
隐形曼青应助123123采纳,获得10
12秒前
yym发布了新的文献求助10
14秒前
Kiki发布了新的文献求助30
15秒前
16秒前
17秒前
weiwei完成签到 ,获得积分10
17秒前
crane完成签到,获得积分10
17秒前
JamesPei应助温暖寻雪采纳,获得10
18秒前
mqq完成签到 ,获得积分10
18秒前
Hehehehe完成签到 ,获得积分10
18秒前
Hello应助海洋球采纳,获得10
19秒前
苏栀发布了新的文献求助10
20秒前
刘林美发布了新的文献求助10
20秒前
21秒前
PZL发布了新的文献求助10
24秒前
26秒前
繁荣的代秋完成签到 ,获得积分10
27秒前
红宝发布了新的文献求助10
27秒前
29秒前
动听的雅绿完成签到 ,获得积分10
29秒前
29秒前
yym完成签到,获得积分10
30秒前
壹君完成签到,获得积分10
32秒前
顾矜应助黄贰叁采纳,获得10
33秒前
鱼儿想游发布了新的文献求助10
34秒前
dingkaixin发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999224
求助须知:如何正确求助?哪些是违规求助? 3538589
关于积分的说明 11274664
捐赠科研通 3277444
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080