重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The Value of Price Discrimination in Large Social Networks

价格歧视 微观经济学 价值(数学) 经济 外部性 判别式 网络效应 社交网络(社会语言学) 计量经济学 透明度(行为) 计算机科学 人工智能 社会化媒体 机器学习 计算机安全 万维网
作者
Jiali Huang,Ankur Mani,Zizhuo Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4454-4477 被引量:16
标识
DOI:10.1287/mnsc.2021.4108
摘要

We study the value of price discrimination in large social networks. Recent trends in industry suggest that, increasingly, firms are using information about social network to offer personalized prices to individuals based upon their positions in the social network. In the presence of positive network externalities, firms aim to increase their profits by offering discounts to influential individuals that can stimulate consumption by other individuals at a higher price. However, the lack of transparency in discriminative pricing may reduce consumer satisfaction and create mistrust. Recent research focuses on the computation of optimal prices in deterministic networks under positive externalities. We want to answer the question of how valuable such discriminative pricing is. We find, surprisingly, that the value of such pricing policies (increase in profits resulting from price discrimination) in very large random networks are often not significant. Particularly, for Erdös–Renyi random networks, we provide the exact rates at which this value decays in the size of the networks for different ranges of network densities. Our results show that there is a nonnegligible value of price discrimination for a small class of moderate-sized Erdös–Renyi random networks. We also present a framework to obtain bounds on the value of price discrimination for random networks with general degree distributions and apply the framework to obtain bounds on the value of price discrimination in power-law networks. Our numerical experiments demonstrate our results and suggest that our results are robust to changes in the model of network externalities. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助三秋采纳,获得10
刚刚
和谐火车完成签到,获得积分10
刚刚
Zenobia发布了新的文献求助10
刚刚
刚刚
刚刚
66发布了新的文献求助10
刚刚
搞怪时光完成签到,获得积分10
1秒前
科研通AI6应助王献杰采纳,获得30
1秒前
自信紫槐完成签到,获得积分10
1秒前
1秒前
chenwuhao发布了新的文献求助10
1秒前
TJC发布了新的文献求助10
1秒前
WangY1263发布了新的文献求助10
2秒前
2秒前
在水一方应助jias采纳,获得10
2秒前
月亮门发布了新的文献求助10
2秒前
狄烁发布了新的文献求助10
3秒前
3秒前
3秒前
hey应助如意的馒头采纳,获得10
4秒前
4秒前
4秒前
4秒前
aaaasss完成签到,获得积分10
4秒前
5秒前
dbaxia完成签到,获得积分10
5秒前
5秒前
科研通AI6应助KongHN采纳,获得10
5秒前
5秒前
guo发布了新的文献求助10
5秒前
yinhao发布了新的文献求助10
6秒前
三腔二囊管发布了新的文献求助100
6秒前
6秒前
光亮烤鸡发布了新的文献求助10
6秒前
tang完成签到,获得积分10
7秒前
7秒前
7秒前
王王王完成签到,获得积分10
7秒前
Neltharion完成签到,获得积分0
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612