The Value of Price Discrimination in Large Social Networks

价格歧视 微观经济学 价值(数学) 经济 外部性 判别式 网络效应 社交网络(社会语言学) 计量经济学 透明度(行为) 计算机科学 人工智能 社会化媒体 机器学习 计算机安全 万维网
作者
Jiali Huang,Ankur Mani,Zizhuo Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4454-4477 被引量:16
标识
DOI:10.1287/mnsc.2021.4108
摘要

We study the value of price discrimination in large social networks. Recent trends in industry suggest that, increasingly, firms are using information about social network to offer personalized prices to individuals based upon their positions in the social network. In the presence of positive network externalities, firms aim to increase their profits by offering discounts to influential individuals that can stimulate consumption by other individuals at a higher price. However, the lack of transparency in discriminative pricing may reduce consumer satisfaction and create mistrust. Recent research focuses on the computation of optimal prices in deterministic networks under positive externalities. We want to answer the question of how valuable such discriminative pricing is. We find, surprisingly, that the value of such pricing policies (increase in profits resulting from price discrimination) in very large random networks are often not significant. Particularly, for Erdös–Renyi random networks, we provide the exact rates at which this value decays in the size of the networks for different ranges of network densities. Our results show that there is a nonnegligible value of price discrimination for a small class of moderate-sized Erdös–Renyi random networks. We also present a framework to obtain bounds on the value of price discrimination for random networks with general degree distributions and apply the framework to obtain bounds on the value of price discrimination in power-law networks. Our numerical experiments demonstrate our results and suggest that our results are robust to changes in the model of network externalities. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
卑微学术人完成签到 ,获得积分10
刚刚
Liyaya完成签到 ,获得积分10
1秒前
道阻且长完成签到 ,获得积分10
2秒前
fyjlfy完成签到 ,获得积分10
2秒前
苗条桐完成签到,获得积分20
2秒前
苍术关注了科研通微信公众号
3秒前
若冰完成签到,获得积分10
3秒前
3秒前
踟蹰发布了新的文献求助10
4秒前
浮游应助典雅又夏采纳,获得10
4秒前
4秒前
ephore应助奋斗诗云采纳,获得50
5秒前
5秒前
xiao发布了新的文献求助10
7秒前
7秒前
leeteukxx完成签到,获得积分10
8秒前
9秒前
火星上香菇完成签到,获得积分20
9秒前
杜飞发布了新的文献求助30
9秒前
10秒前
wang驳回了Dean应助
11秒前
苹果花完成签到,获得积分10
11秒前
12秒前
12秒前
Qianfan发布了新的文献求助10
13秒前
zzzqqq完成签到,获得积分10
13秒前
秋水发布了新的文献求助10
14秒前
露西亚发布了新的文献求助20
14秒前
14秒前
il完成签到 ,获得积分10
15秒前
15秒前
16秒前
小马甲应助苍术采纳,获得10
16秒前
16秒前
17秒前
善学以致用应助linmo采纳,获得10
18秒前
细腻冬日完成签到,获得积分10
18秒前
刻苦水风发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125