Machine learning for high-throughput experimental exploration of metal halide perovskites

卤化物 计算机科学 吞吐量 钙钛矿(结构) 材料科学 纳米技术 金属 工程类 化学工程 化学 无机化学 冶金 电信 无线
作者
Mahshid Ahmadi,Maxim Ziatdinov,Yuanyuan Zhou,Eric A. Lass,Sergei V. Kalinin
出处
期刊:Joule [Elsevier]
卷期号:5 (11): 2797-2822 被引量:74
标识
DOI:10.1016/j.joule.2021.10.001
摘要

Metal halide perovskites (MHPs) have catapulted to the forefront of energy research due to the unique combination of high device performance, low materials cost, and facile solution processability. A remarkable merit of these materials is their compositional flexibility allowing for multiple substitutions at all crystallographic sites, and hence thousands of possible pure compounds and virtually a near-infinite number of multicomponent solid solutions. Harnessing the full potential of MHPs necessitates rapid exploration of multidimensional chemical space toward desired functionalities. Recent advances in laboratory automation, ranging from bespoke fully automated robotic labs to microfluidic systems and to pipetting robots, have enabled high-throughput experimental workflows for synthesizing MHPs. Here, we provide an overview of the state of the art in the automated MHP synthesis and existing methods for navigating multicomponent compositional space. We highlight the limitations and pitfalls of the existing strategies and formulate the requirements for necessary machine learning tools including causal and Bayesian methods, as well as strategies based on co-navigation of theoritical and experimental spaces. We argue that ultimately the goal of automated experiments is to simultaneously optimize the materials synthesis and refine the theoretical models that underpin target functionalities. Furthermore, the near-term development of automated experimentation will not lead to the full exclusion of human operator but rather automatization of repetitive operations, deferring human role to high-level slow decisions. We also discuss the emerging opportunities leveraging machine learning-guided automated synthesis to the development of high-performance perovskite optoelectronics. Metal halide perovskites (MHPs) have catapulted to the forefront of energy research due to the unique combination of high device performance, low materials cost, and facile solution processability. A remarkable merit of these materials is their compositional flexibility allowing for multiple substitutions at all crystallographic sites, and hence thousands of possible pure compounds and virtually a near-infinite number of multicomponent solid solutions. Harnessing the full potential of MHPs necessitates rapid exploration of multidimensional chemical space toward desired functionalities. Recent advances in laboratory automation, ranging from bespoke fully automated robotic labs to microfluidic systems and to pipetting robots, have enabled high-throughput experimental workflows for synthesizing MHPs. Here, we provide an overview of the state of the art in the automated MHP synthesis and existing methods for navigating multicomponent compositional space. We highlight the limitations and pitfalls of the existing strategies and formulate the requirements for necessary machine learning tools including causal and Bayesian methods, as well as strategies based on co-navigation of theoritical and experimental spaces. We argue that ultimately the goal of automated experiments is to simultaneously optimize the materials synthesis and refine the theoretical models that underpin target functionalities. Furthermore, the near-term development of automated experimentation will not lead to the full exclusion of human operator but rather automatization of repetitive operations, deferring human role to high-level slow decisions. We also discuss the emerging opportunities leveraging machine learning-guided automated synthesis to the development of high-performance perovskite optoelectronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的秋天完成签到 ,获得积分10
刚刚
北辰完成签到 ,获得积分10
6秒前
白华苍松发布了新的文献求助10
12秒前
淞淞于我完成签到 ,获得积分10
12秒前
24秒前
J陆lululu完成签到 ,获得积分10
45秒前
朴实乐天完成签到 ,获得积分10
49秒前
浮华乱世完成签到 ,获得积分10
1分钟前
yingtiao完成签到 ,获得积分10
1分钟前
永不言弃完成签到 ,获得积分10
1分钟前
1分钟前
courage完成签到,获得积分10
1分钟前
骤雨时晴发布了新的文献求助10
1分钟前
小二郎应助qiuxuan100采纳,获得10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
和平完成签到 ,获得积分10
1分钟前
波里舞完成签到 ,获得积分10
1分钟前
高高的丹雪完成签到 ,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
骤雨时晴完成签到 ,获得积分10
1分钟前
isedu完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Baboonium完成签到,获得积分10
2分钟前
高高的天亦完成签到 ,获得积分10
2分钟前
Telomere完成签到 ,获得积分10
2分钟前
violetlishu完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
502091422发布了新的文献求助10
2分钟前
loren313完成签到,获得积分0
2分钟前
2分钟前
糖宝完成签到 ,获得积分10
2分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
cdercder应助qiuxuan100采纳,获得10
2分钟前
111完成签到 ,获得积分10
2分钟前
孙太阳发布了新的文献求助10
2分钟前
jlwang发布了新的文献求助10
2分钟前
铎铎铎完成签到 ,获得积分10
2分钟前
煜琪发布了新的文献求助10
3分钟前
Shrimp完成签到 ,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393121
求助须知:如何正确求助?哪些是违规求助? 3003420
关于积分的说明 8809240
捐赠科研通 2690247
什么是DOI,文献DOI怎么找? 1473591
科研通“疑难数据库(出版商)”最低求助积分说明 681608
邀请新用户注册赠送积分活动 674550