Estimating compressive strength of modern concrete mixtures using computational intelligence: A systematic review

超参数 抗压强度 机器学习 计算机科学 胶凝的 人工智能 实验数据
作者
Itzel Nunez,Afshin Marani,Majdi Flah,Moncef L. Nehdi
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:310: 125279-125279
标识
DOI:10.1016/j.conbuildmat.2021.125279
摘要

• Review demystifies use of machine learning in predicting properties of concrete. • Hyperparameters of ML along with their accuracy are critically analyzed and discussed. • Main findings of NL predictions of compressive strength of various concrete types are presented. • Recommendations for best practice are made and needed future research is identified. The mixture proportioning of conventional concrete is commonly established using regression analysis of experimental data. However, such traditional empirical procedures have proven less accurate for modern complex cementitious composites. The lack of robust predictive tools for estimating the mixture composition and engineering properties of novel concretes led to deploying machine learning techniques. Although these versatile computational algorithms have proven successful in diverse applications, their performance is highly dependent on the data structure and appropriate selection of hyperparameters. Therefore, this paper demystifies the use of ML in concrete technology by systematically surveying and critically reviewing ML algorithms employed to predict the compressive strength of modern concrete mixtures. The hyperparameters of various machine learning models along with the achieved accuracy are critically analyzed and discussed. The main findings regarding machine learning predictions of compressive strength for various concrete types are presented, recommendations for best practice are made, and needed future research is identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xibei完成签到 ,获得积分10
刚刚
CaoRouLi完成签到,获得积分10
1秒前
1秒前
3秒前
爆米花应助Bigbiglei采纳,获得10
3秒前
4秒前
NaNa完成签到,获得积分10
6秒前
66m37完成签到,获得积分10
6秒前
wengi94发布了新的文献求助10
7秒前
在水一方应助玩命的学姐采纳,获得10
10秒前
芬达要加冰完成签到 ,获得积分10
12秒前
闫栋完成签到 ,获得积分10
13秒前
meimei完成签到 ,获得积分10
14秒前
嗯哼应助苞大米采纳,获得10
15秒前
15秒前
chen完成签到,获得积分10
17秒前
18秒前
小mo爱吃李完成签到,获得积分10
18秒前
眯眯眼的衬衫应助fd163c采纳,获得10
18秒前
REN应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得30
19秒前
情怀应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
安古妮稀完成签到,获得积分10
22秒前
22秒前
chen发布了新的文献求助10
24秒前
25秒前
MEIJIE完成签到,获得积分10
25秒前
罗实完成签到 ,获得积分10
26秒前
一往之前发布了新的文献求助10
26秒前
little完成签到,获得积分10
27秒前
可爱的函函应助Nice采纳,获得10
27秒前
29秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464415
求助须知:如何正确求助?哪些是违规求助? 3057766
关于积分的说明 9058262
捐赠科研通 2747795
什么是DOI,文献DOI怎么找? 1507619
科研通“疑难数据库(出版商)”最低求助积分说明 696587
邀请新用户注册赠送积分活动 696199