Estimating compressive strength of modern concrete mixtures using computational intelligence: A systematic review

超参数 抗压强度 机器学习 计算机科学 胶凝的 人工智能 实验数据
作者
Itzel Nunez,Afshin Marani,Majdi Flah,Moncef L. Nehdi
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:310: 125279-125279
标识
DOI:10.1016/j.conbuildmat.2021.125279
摘要

• Review demystifies use of machine learning in predicting properties of concrete. • Hyperparameters of ML along with their accuracy are critically analyzed and discussed. • Main findings of NL predictions of compressive strength of various concrete types are presented. • Recommendations for best practice are made and needed future research is identified. The mixture proportioning of conventional concrete is commonly established using regression analysis of experimental data. However, such traditional empirical procedures have proven less accurate for modern complex cementitious composites. The lack of robust predictive tools for estimating the mixture composition and engineering properties of novel concretes led to deploying machine learning techniques. Although these versatile computational algorithms have proven successful in diverse applications, their performance is highly dependent on the data structure and appropriate selection of hyperparameters. Therefore, this paper demystifies the use of ML in concrete technology by systematically surveying and critically reviewing ML algorithms employed to predict the compressive strength of modern concrete mixtures. The hyperparameters of various machine learning models along with the achieved accuracy are critically analyzed and discussed. The main findings regarding machine learning predictions of compressive strength for various concrete types are presented, recommendations for best practice are made, and needed future research is identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning_qing发布了新的文献求助30
1秒前
无花果应助89采纳,获得10
2秒前
2秒前
3秒前
Akim应助阳阿儿采纳,获得10
3秒前
4秒前
哭泣灯泡完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
视野胤发布了新的文献求助10
8秒前
yangyang完成签到 ,获得积分10
8秒前
lll应助白衣轻叹采纳,获得10
9秒前
蛋蛋1完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
12秒前
14秒前
端庄煎饼完成签到,获得积分10
15秒前
CipherSage应助认真的谷蓝采纳,获得10
16秒前
fygiuh完成签到,获得积分10
16秒前
16秒前
LLL完成签到 ,获得积分10
17秒前
some完成签到,获得积分10
18秒前
辛子发布了新的文献求助20
19秒前
19秒前
难过山菡发布了新的文献求助30
19秒前
瘦瘦白昼完成签到 ,获得积分10
19秒前
执着的小刺猬完成签到,获得积分20
20秒前
huhuhu发布了新的文献求助10
21秒前
21秒前
南风发布了新的文献求助10
21秒前
21秒前
22秒前
余味完成签到,获得积分10
22秒前
燕子发布了新的文献求助10
23秒前
Mely0203完成签到,获得积分20
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230