电解质
法拉第效率
碳酸乙烯酯
阳极
电化学
碳酸二甲酯
无机化学
阴极
化学工程
分离器(采油)
材料科学
X射线光电子能谱
锂(药物)
化学
甲醇
电极
有机化学
物理化学
内分泌学
工程类
物理
热力学
医学
作者
Wenbo Hou,Delun Zhu,Shangde Ma,Weijie Yang,Hao Yan,Yang Dai
标识
DOI:10.1016/j.jpowsour.2021.230683
摘要
Electrolyte system with high electrochemical stability and interfacial compatibility is essential to the high-performance lithium metal battery. Herein, we introduce an electrolyte design of 1 M Lithium bistrifluoromethosulfonimide (LiTFSI) sulfolane/1,1,2,2-Tetrafluoroethyl 2,2,3,3-Tetrafluoropropyl Ether (HFE)/Fluoroethylene carbonate (FEC) to improve the high voltage performance (4.7 V) for LiNi0.8Mn0.1Co0.1O2 based lithium metal batteries. Such a designed electrolyte exhibits a high-voltage limit of 5.1 V,compared to 4.3 V of the carbonated-based electrolyte (1 M Lithium hexafluorophosphate (LiPF6) ethylene carbonate(EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) 1:1:1). The cell with the designed electrolyte improves the coulombic efficiency, rate and cycle capability. The cell with the designed electrolyte delivers a reversible capacity of ∼220 mAh g−1 at 0.1C, with a capacity retention of ∼85% after 150 cycles (0.5C charge/discharge, 3.0–4.7 V), while the commercial electrolyte only exerts a capacity retention of 71.60%. X-Ray Powder Diffraction (XRD),Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) analysis reveal the designed electrolyte effectively improve the structural and interfacial stability on cathode. It also suppresses the lithium-dendrite growth and facilitates the stable lithium-plating/stripping on lithium metal anode. While the carbonate-based electrolyte forms thick and unstable interface on cathode and grows dendrite-liked surface on lithium anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI