miRPreM and tiRPreM: Improved methodologies for the prediction of miRNAs and tRNA-induced small non-coding RNAs for model and non-model organisms

有机体 计算生物学 转移RNA 鉴定(生物学) 模式生物 基因组 生物 小RNA 小RNA 计算机科学
作者
Hukam C. Rawal,Shakir Ali,Tapan Kumar Mondal
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1)
标识
DOI:10.1093/bib/bbab448
摘要

Abstract In recent years, microRNAs (miRNAs) and tRNA-derived RNA fragments (tRFs) have been reported extensively following different approaches of identification and analysis. Comprehensively analyzing the present approaches to overcome the existing variations, we developed a benchmarking methodology each for the identification of miRNAs and tRFs, termed as miRNA Prediction Methodology (miRPreM) and tRNA-induced small non-coding RNA Prediction Methodology (tiRPreM), respectively. We emphasized the use of respective genome of organism under study for mapping reads, sample data with at least two biological replicates, normalized read count support and novel miRNA prediction by two standard tools with multiple runs. The performance of these methodologies was evaluated by using Oryza coarctata, a wild rice species as a case study for model and non-model organisms. With organism-specific reference genome approach, 98 miRNAs and 60 tRFs were exclusively found. We observed high accuracy (13 out of 15) when tested these genome-specific miRNAs in support of analyzing the data with respective organism. Such a strong impact of miRPreM, we have predicted more than double number of miRNAs (186) as compared with the traditional approaches (79) and with tiRPreM, we have predicted all known classes of tRFs within the same small RNA data. Moreover, the methodologies presented here are in standard form in order to extend its applicability to different organisms rather than restricting to plants. Hence, miRPreM and tiRPreM can fulfill the need of a comprehensive methodology for miRNA prediction and tRF identification, respectively, for model and non-model organisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的元容完成签到,获得积分10
2秒前
2秒前
幸福大白发布了新的文献求助10
4秒前
陈运气发布了新的文献求助10
6秒前
奇迹探索者完成签到,获得积分10
8秒前
茂茂357完成签到,获得积分10
9秒前
15秒前
小马甲应助堀江真夏采纳,获得10
16秒前
传奇3应助紫色奶萨采纳,获得10
17秒前
脑洞疼应助奇迹探索者采纳,获得10
19秒前
幸福遥完成签到,获得积分10
19秒前
花花燕发布了新的文献求助10
20秒前
21秒前
23秒前
24秒前
26秒前
陈天爱学习完成签到,获得积分10
27秒前
lck发布了新的文献求助20
29秒前
刘YF发布了新的文献求助10
30秒前
31秒前
31秒前
32秒前
花花燕完成签到,获得积分10
32秒前
33秒前
hehe完成签到,获得积分10
34秒前
34秒前
ksak607155完成签到,获得积分10
34秒前
紫色奶萨发布了新的文献求助10
35秒前
38秒前
38秒前
39秒前
今后应助陈天爱学习采纳,获得10
39秒前
40秒前
43秒前
Tong发布了新的文献求助10
45秒前
49秒前
SciGPT应助刘YF采纳,获得80
51秒前
53秒前
陈运气完成签到 ,获得积分20
53秒前
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129