Topology Optimization Design Of Meta-Material Heat Spreader

多物理 拓扑(电路) 传热 机械工程 散热膏 散热片 物理 计算机科学 电气工程 有限元法 热力学 工程类
作者
Xue Bai,Qinghua Hu,Xiaoliang Zeng,Rong Sun,Jianbin Xu
标识
DOI:10.1109/icept52650.2021.9567943
摘要

The increasing power density in electronics calls for novel approaches to manipulate heat flow. Thermal meta-materials, which do not exist naturally but can be designed rationally, have been proved to manipulate heat flow as will recently. The heat flow manipulators constructed by the thermal meta-materials, such as thermal cloak, thermal concentrator and thermal rotator have exhibited the potentials to be applied in novel heat flow guiding in electronics packaging. This work aims to design heat spreader with thermal meta-materials to protect critical device component from heat source and dissipate heat flow in a deterministic way. Commercial finite element software COMSOL Multiphysics has been used in solving topology optimization of heat transfer problem. The physical model has been set as a hot spot heat source with a power density of 1 × 10 11 W/m 3 placed in the upper part of a 0.1mm height silicon plate. The size of the plate is 0.6*1 mm 2 and the radius of the hot spot is 0.1mm. A critical square component with a size of 0.2*0.2 mm 2 is placed in the lower part of the plate. A middle section with a size of 0.2*0.1 mm 2 at bottom side of the plate is set to room temperature T0=293.15K to represent that it is connected to a heat sink. Two sections with the size of 0.1 *0.1 mm 2 at upper side of the plate are also set to room temperature T0 to represent two electrodes connecting to heat sink. The rest edges of the plate are set as convective heat flux to the environment with a heat transfer coefficient h=10 W/(m 2 . K). The simulation results have shown that the average temperature of the critical component is 5.92K lower after the optimization. However, the heat dissipation in the heat source region has been sacrificed under the current the optimization objective. This work has offered an interesting and alternative approach for design heat management devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忧郁绿兰完成签到,获得积分10
刚刚
huangyi发布了新的文献求助10
1秒前
1秒前
邓佳鑫Alan应助uniphoton采纳,获得10
1秒前
打打应助哭泣的金鱼采纳,获得10
1秒前
起风了发布了新的文献求助10
2秒前
灬乔完成签到 ,获得积分10
2秒前
yxy发布了新的文献求助10
2秒前
与光同晨发布了新的文献求助10
2秒前
3秒前
陶醉薯片完成签到,获得积分20
3秒前
smartbot完成签到,获得积分10
4秒前
请叫我风吹麦浪应助mi采纳,获得10
4秒前
4秒前
YHL发布了新的文献求助10
4秒前
su完成签到,获得积分10
4秒前
4秒前
自信富完成签到,获得积分10
5秒前
乖乖完成签到 ,获得积分10
5秒前
5秒前
liudiqiu应助Ll采纳,获得10
5秒前
灬乔关注了科研通微信公众号
6秒前
张菁完成签到,获得积分10
6秒前
菠萝吹雪应助xiachengcs采纳,获得30
7秒前
洋洋发布了新的文献求助10
7秒前
7秒前
8秒前
威武爆米花完成签到,获得积分10
9秒前
在水一方应助zhaowenxian采纳,获得10
10秒前
SS给SS的求助进行了留言
10秒前
11秒前
13秒前
Linden_bd完成签到 ,获得积分10
13秒前
科研通AI5应助yangyangyang采纳,获得10
13秒前
13秒前
漠北完成签到,获得积分10
13秒前
13秒前
Isabel完成签到 ,获得积分10
14秒前
起风了完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762