ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing

GSM演进的增强数据速率 计算机科学 移动边缘计算 边缘计算 人工智能
作者
Haibin Zhou,Mohammad Shojafar,Jemal Abawajy,Hui Yin,Hongming Lu
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 238-247 被引量:34
标识
DOI:10.1109/tgcn.2021.3121961
摘要

With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC's carbon footprint in accordance with green computing and sustainable development. However, predicting energy consumption of edge servers is a nontrivial problem due to the fluctuation and variation of different loads. To address this problem, we propose ECMS, a new edge intelligent energy modeling approach that jointly adopts Elman Neural Network (ENN) and feature selection to optimize the consumption of energy on edge servers. ECMS considers 29 parameters relevant to edge server energy consumption and uses the ENN to develop an energy consumption model. Unlike other energy consumption models, ECMS can successfully deal with load fluctuation and various sorts of tasks, such as CPU-intensive, online transaction-intensive, and I/O-intensive. We have validated ECMS through extensive experiments and compared its performance in terms of accuracy and training time to several baseline approaches. The experimental results show the superiority of ECMS to the baseline models. We believe that the proposed model can be used by the MEC resource providers to forecast and optimize energy use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
conlensce发布了新的文献求助10
刚刚
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
1秒前
ri_290完成签到,获得积分10
2秒前
dtcao完成签到,获得积分20
3秒前
王天一完成签到,获得积分10
3秒前
黎黎原上草完成签到,获得积分10
3秒前
闫星宇完成签到,获得积分10
3秒前
sunly完成签到,获得积分10
4秒前
kol完成签到,获得积分10
5秒前
丘比特应助静xixi采纳,获得10
5秒前
Yolo完成签到,获得积分10
5秒前
小天狼星完成签到,获得积分10
5秒前
小巧的柚子完成签到,获得积分10
5秒前
6秒前
顾白凡应助dtcao采纳,获得10
7秒前
SPt完成签到,获得积分20
7秒前
1101592875发布了新的文献求助10
8秒前
samtol完成签到,获得积分10
8秒前
momofengfeng完成签到,获得积分10
8秒前
咕噜噜完成签到,获得积分10
9秒前
君君完成签到,获得积分10
9秒前
苏苏完成签到,获得积分10
10秒前
高挑的听南完成签到,获得积分10
10秒前
自由如风完成签到 ,获得积分10
10秒前
如梦如画完成签到 ,获得积分10
10秒前
无花果应助李双艳采纳,获得10
10秒前
君莫笑完成签到,获得积分10
11秒前
fuyg发布了新的文献求助10
12秒前
青黄完成签到,获得积分10
12秒前
鲸鱼完成签到,获得积分10
12秒前
Hina完成签到,获得积分10
13秒前
phoenix001完成签到,获得积分10
13秒前
14秒前
RMgX完成签到,获得积分10
14秒前
15秒前
feitian201861完成签到,获得积分0
15秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259