ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing

GSM演进的增强数据速率 计算机科学 移动边缘计算 边缘计算 人工智能
作者
Haibin Zhou,Mohammad Shojafar,Jemal Abawajy,Hui Yin,Hongming Lu
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 238-247 被引量:34
标识
DOI:10.1109/tgcn.2021.3121961
摘要

With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC's carbon footprint in accordance with green computing and sustainable development. However, predicting energy consumption of edge servers is a nontrivial problem due to the fluctuation and variation of different loads. To address this problem, we propose ECMS, a new edge intelligent energy modeling approach that jointly adopts Elman Neural Network (ENN) and feature selection to optimize the consumption of energy on edge servers. ECMS considers 29 parameters relevant to edge server energy consumption and uses the ENN to develop an energy consumption model. Unlike other energy consumption models, ECMS can successfully deal with load fluctuation and various sorts of tasks, such as CPU-intensive, online transaction-intensive, and I/O-intensive. We have validated ECMS through extensive experiments and compared its performance in terms of accuracy and training time to several baseline approaches. The experimental results show the superiority of ECMS to the baseline models. We believe that the proposed model can be used by the MEC resource providers to forecast and optimize energy use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuanx237发布了新的文献求助10
刚刚
zhtgang完成签到,获得积分10
1秒前
,645615616完成签到,获得积分10
1秒前
咸鱼细胞人关注了科研通微信公众号
2秒前
3秒前
bxj发布了新的文献求助10
3秒前
4秒前
4秒前
极地东风完成签到,获得积分10
5秒前
丝丢皮的发布了新的文献求助10
8秒前
sherwing2009发布了新的文献求助10
8秒前
科研通AI2S应助研友_8Y26PL采纳,获得10
9秒前
Lucas应助ZC采纳,获得10
10秒前
10秒前
莫西莫西发布了新的文献求助10
10秒前
科研通AI2S应助喜宝采纳,获得10
10秒前
12秒前
李爱国应助zbx采纳,获得10
13秒前
Yh_alive完成签到,获得积分10
14秒前
14秒前
lfc完成签到,获得积分10
15秒前
18秒前
18秒前
19秒前
丝丢皮的完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
zbx完成签到,获得积分10
24秒前
25秒前
小常完成签到,获得积分10
26秒前
军军问问张完成签到,获得积分10
29秒前
米花完成签到 ,获得积分10
30秒前
星下梧桐应助栏橙橘采纳,获得10
30秒前
30秒前
传奇3应助感动代荷采纳,获得10
32秒前
王陈龙完成签到,获得积分10
33秒前
fleeper发布了新的文献求助10
34秒前
cxy完成签到,获得积分10
35秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905