A generative adversarial network (GAN)-based technique for synthesizing realistic respiratory motion in the extended cardiac-torso (XCAT) phantoms

人体躯干 计算机科学 生成对抗网络 运动(物理) 人工智能 物理 医学 深度学习 解剖
作者
Yushi Chang,Zhuoran Jiang,W. Paul Segars,Zeyu Zhang,Kyle Lafata,Jing Cai,F Yin,Lei Ren
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (11): 115018-115018 被引量:10
标识
DOI:10.1088/1361-6560/ac01b4
摘要

Abstract Objective . Synthesize realistic and controllable respiratory motions in the extended cardiac-torso (XCAT) phantoms by developing a generative adversarial network (GAN)-based deep learning technique. Methods . A motion generation model was developed using bicycle-GAN with a novel 4D generator. Input with the end-of-inhale (EOI) phase images and a Gaussian perturbation, the model generates inter-phase deformable-vector-fields (DVFs), which were composed and applied to the input to generate 4D images. The model was trained and validated using 71 4D-CT images from lung cancer patients and then applied to the XCAT EOI images to generate 4D-XCAT with realistic respiratory motions. A separate respiratory motion amplitude control model was built using decision tree regression to predict the input perturbation needed for a specific motion amplitude, and this model was developed using 300 4D-XCAT generated from 6 XCAT phantom sizes with 50 different perturbations for each size. In both patient and phantom studies, Dice coefficients for lungs and lung volume variation during respiration were compared between the simulated images and reference images. The generated DVF was evaluated by deformation energy. DVFs and ventilation maps of the simulated 4D-CT were compared with the reference 4D-CTs using cross correlation and Spearman’s correlation. Comparison of DVFs and ventilation maps among the original 4D-XCAT, the generated 4D-XCAT, and reference patient 4D-CTs were made to show the improvement of motion realism by the model. The amplitude control error was calculated. Results . Comparing the simulated and reference 4D-CTs, the maximum deviation of lung volume during respiration was 5.8%, and the Dice coefficient reached at least 0.95 for lungs. The generated DVFs presented comparable deformation energy levels. The cross correlation of DVFs achieved 0.89 ± 0.10/0.86 ± 0.12/0.95 ± 0.04 along the x / y / z direction in the testing group. The cross correlation of ventilation maps derived achieved 0.80 ± 0.05/0.67 ± 0.09/0.68 ± 0.13, and the Spearman’s correlation achieved 0.70 ± 0.05/0, 60 ± 0.09/0.53 ± 0.01, respectively, in the training/validation/testing groups. The generated 4D-XCAT phantoms presented similar deformation energy as patient data while maintained the lung volumes of the original XCAT phantom (Dice = 0.95, maximum lung volume variation = 4%). The motion amplitude control models controlled the motion amplitude control error to be less than 0.5 mm. Conclusions . The results demonstrated the feasibility of synthesizing realistic controllable respiratory motion in the XCAT phantom using the proposed method. This crucial development enhances the value of XCAT phantoms for various 4D imaging and therapy studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aspirin完成签到,获得积分10
2秒前
小鹏子完成签到,获得积分20
2秒前
2秒前
Catalysis123发布了新的文献求助10
2秒前
白踏歌完成签到,获得积分20
4秒前
4秒前
TISFJ给TISFJ的求助进行了留言
5秒前
科研通AI6应助江小姜采纳,获得10
6秒前
琪求好运发布了新的文献求助10
7秒前
事事包子完成签到 ,获得积分10
9秒前
暖暖圆圆完成签到,获得积分10
10秒前
han123123发布了新的文献求助10
10秒前
欢呼的丁真完成签到,获得积分10
12秒前
13秒前
Neonoes完成签到 ,获得积分10
14秒前
zahlkorper完成签到,获得积分20
15秒前
16秒前
hsp完成签到,获得积分10
17秒前
wuyany33完成签到,获得积分10
19秒前
贾慧莲发布了新的文献求助10
19秒前
hsp发布了新的文献求助30
20秒前
6wt完成签到,获得积分10
21秒前
郑传伟完成签到 ,获得积分10
22秒前
DZM发布了新的文献求助10
23秒前
开心向真完成签到 ,获得积分10
23秒前
23秒前
24秒前
早睡早起完成签到,获得积分10
25秒前
26秒前
changyouhuang完成签到,获得积分10
26秒前
兜兜应助Upupgrowth采纳,获得10
26秒前
漠雨寒灯完成签到 ,获得积分10
26秒前
mihhhhh完成签到,获得积分10
27秒前
27秒前
弹剑作歌完成签到,获得积分10
28秒前
霍允发布了新的文献求助10
28秒前
28秒前
酸奶七完成签到,获得积分10
29秒前
陶佳仪完成签到,获得积分10
30秒前
江姜完成签到 ,获得积分10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564