Experimental and theoretical realization of an advanced bifunctional 2D δ-MnO2 electrode for supercapacitor and oxygen evolution reaction via defect engineering

材料科学 密度泛函理论 塔菲尔方程 超级电容器 过电位 空位缺陷 析氧 电容 化学物理 纳米技术 化学工程 电化学 电极 物理化学 化学 计算化学 结晶学 工程类
作者
Rutuparna Samal,Manikandan Kandasamy,Brahmananda Chakraborty,Chandra Sekhar Rout
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:46 (55): 28028-28042 被引量:25
标识
DOI:10.1016/j.ijhydene.2021.06.054
摘要

Modulating the intrinsic physicochemical properties of crystalline 2D materials by dint of defect engineering largely enables multi-functionality. Uniform thin layered nanosheets further self-assembled at micro scale forming embossing structures of δ-MnO2 were fabricated by microwave irradiation technique. The irradiation of UV/O3 impacts incorporation of oxygen vacancy into the pristine system. Furthermore, detailed structural, morphological, surface analytical and electrochemical investigations evidenced outstanding energy storage and conversion activities. The asymmetric device δ-MnO2-UVT//F-MWCNT with an extended potential window 1.5 V, exhibited maximum energy density of 39 Wh/kg at a power density of 468.75 W/kg. The defect structural design exhibited excellent electrocatalytic OER activity with lowest overpotential (η20, 300 mV) and Tafel slope (71 mV/dec). The efficiency and stability of the illuminated material showed outstanding performances. To support our experimental findings, we have presented the electronic structures and quantum capacitance for pristine δ-MnO2 and δ-MnO2 with O vacancy employing Density Functional Theory (DFT) simulations. Presence of O vacancy makes a semi-conducting to metallic transition. The oxygen vacancies delocalize the neighboring electrons around the low coordinated Mn atoms and these delocalized electrons can be easily moved into the conduction band resulting improved conductivity in the material. In addition, the computed quantum capacitance tendency is as follows, δ-MnO2-UVT > δ-MnO2 which associates with the experimental supercapacitance behaviour of these systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助人类不宜搞科研采纳,获得10
刚刚
我主沉浮发布了新的文献求助10
1秒前
Lucas应助guo采纳,获得10
1秒前
2秒前
科研通AI6应助ayintree采纳,获得10
2秒前
可爱的函函应助ayintree采纳,获得10
2秒前
momo完成签到,获得积分10
2秒前
于瑜与余完成签到,获得积分10
3秒前
yaoeer发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
4秒前
是个宝耶完成签到 ,获得积分10
4秒前
慕青应助优秀的大璇采纳,获得10
5秒前
牛牛完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
FrankJeffison发布了新的文献求助10
5秒前
niNe3YUE应助Waley采纳,获得20
6秒前
欢喜的祥发布了新的文献求助20
6秒前
6秒前
6秒前
熊黛林应助端庄的寄凡采纳,获得10
7秒前
无极微光应助端庄的寄凡采纳,获得20
7秒前
11发布了新的文献求助10
7秒前
8秒前
哲别发布了新的文献求助10
8秒前
9秒前
上官若男应助limyao采纳,获得10
9秒前
Steve发布了新的文献求助10
9秒前
熊黛林完成签到,获得积分10
9秒前
wulififi发布了新的文献求助10
11秒前
xiuxiuzhang发布了新的文献求助10
13秒前
可爱的小朋友完成签到,获得积分10
14秒前
FashionBoy应助shenhongru采纳,获得10
14秒前
QQQ完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
17秒前
斯文败类应助WEAWEA采纳,获得10
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233