Modeling, state of charge estimation, and charging of lithium‐ion battery in electric vehicle: A review

荷电状态 电池(电) 电动汽车 锂离子电池 计算机科学 汽车工程 工程类 功率(物理) 电气工程 可靠性工程 电压 健康状况 量子力学 物理
作者
A. Maheshwari,Nageswari Sathiyamoorthy
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (3): 2141-2165 被引量:230
标识
DOI:10.1002/er.7339
摘要

Extension of driving range and battery run time optimization are necessary key points in the modeling of Electric Vehicle (EV). In this view, Battery Management System (BMS) plays a major role to ensure a safe and trustworthy battery operation, especially when using Lithium-ion (Li-ion) batteries in an electric vehicle. Key function of BMS is State of Charge (SoC) estimation. A well-parameterized battery model is required for accurate state estimation. Consequently, the major factors to be considered in battery modeling are the SoC estimation and charging methodology of an effective BMS development. By focusing on these features, in this paper, the well-known battery models such as the electrochemical model, equivalent circuit model, and data-driven model are comprehensively reviewed along with their strengths and weaknesses. Further, the SoC estimation of a battery is also discussed by using standard methodologies such as direct estimation methods and model-based estimation methods. The comparisons of the three most distinct battery models and the classification of SoC estimation techniques to develop a proper BMS for EV with the focus on accuracy, configuration effort, computational complexity, ease of implementation, and real-time applications are systematically reviewed. In addition to this, convenient battery charging approaches with the consideration of some constraints such as charging time, charging efficiency, state of charge, state of health, charging voltage threshold, capacity fade, power fade, aging effect, capacity utilization, impedance rise, and temperature rise of the battery in EV are presented. Finally, the perspectives of the existing work and the recommended future research work of BMS are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小树完成签到 ,获得积分10
刚刚
王宝连发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
丁论文完成签到 ,获得积分10
2秒前
Angleli完成签到,获得积分10
3秒前
虚幻的捕完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
科研通AI6应助zhuhuaipu采纳,获得10
5秒前
原子完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
科研通AI6应助李月采纳,获得10
6秒前
6秒前
7秒前
7秒前
Owen应助HHZ采纳,获得10
7秒前
8秒前
9秒前
9秒前
隐形曼青应助LC采纳,获得10
10秒前
无极微光应助垃圾筐采纳,获得20
10秒前
秋梨膏完成签到 ,获得积分10
11秒前
11秒前
haifang发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
在水一方应助HHZ采纳,获得10
12秒前
12秒前
郭郭郭发布了新的文献求助10
13秒前
学术菜鸡123完成签到,获得积分10
13秒前
陈明健完成签到,获得积分10
13秒前
举人烧烤发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
16秒前
Bill发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895