Modeling, state of charge estimation, and charging of lithium‐ion battery in electric vehicle: A review

荷电状态 电池(电) 电动汽车 锂离子电池 计算机科学 汽车工程 工程类 功率(物理) 电气工程 可靠性工程 电压 健康状况 量子力学 物理
作者
A. Maheshwari,Nageswari Sathiyamoorthy
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (3): 2141-2165 被引量:230
标识
DOI:10.1002/er.7339
摘要

Extension of driving range and battery run time optimization are necessary key points in the modeling of Electric Vehicle (EV). In this view, Battery Management System (BMS) plays a major role to ensure a safe and trustworthy battery operation, especially when using Lithium-ion (Li-ion) batteries in an electric vehicle. Key function of BMS is State of Charge (SoC) estimation. A well-parameterized battery model is required for accurate state estimation. Consequently, the major factors to be considered in battery modeling are the SoC estimation and charging methodology of an effective BMS development. By focusing on these features, in this paper, the well-known battery models such as the electrochemical model, equivalent circuit model, and data-driven model are comprehensively reviewed along with their strengths and weaknesses. Further, the SoC estimation of a battery is also discussed by using standard methodologies such as direct estimation methods and model-based estimation methods. The comparisons of the three most distinct battery models and the classification of SoC estimation techniques to develop a proper BMS for EV with the focus on accuracy, configuration effort, computational complexity, ease of implementation, and real-time applications are systematically reviewed. In addition to this, convenient battery charging approaches with the consideration of some constraints such as charging time, charging efficiency, state of charge, state of health, charging voltage threshold, capacity fade, power fade, aging effect, capacity utilization, impedance rise, and temperature rise of the battery in EV are presented. Finally, the perspectives of the existing work and the recommended future research work of BMS are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小七发布了新的文献求助10
刚刚
煦暖发布了新的文献求助30
刚刚
斯文败类应助LEI采纳,获得10
刚刚
王知颖发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
所所应助Belle采纳,获得10
1秒前
林kh完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
今后应助阿乐采纳,获得10
3秒前
3秒前
听话的初之完成签到,获得积分10
3秒前
搜集达人应助雪山飞龙采纳,获得10
3秒前
乐乐应助康康采纳,获得10
3秒前
何香香能吃苦完成签到,获得积分10
3秒前
miao发布了新的文献求助10
4秒前
yangzhongou发布了新的文献求助10
4秒前
4秒前
科目三应助凄凉山谷的风采纳,获得10
4秒前
南巷与你完成签到,获得积分10
5秒前
九九完成签到,获得积分10
5秒前
斯文败类应助满意的聋五采纳,获得10
5秒前
席以亦发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
霸气千万完成签到,获得积分10
6秒前
小明发布了新的文献求助10
6秒前
科研通AI2S应助aka2012采纳,获得10
6秒前
7秒前
7秒前
Yuan88发布了新的文献求助10
7秒前
7秒前
冰216发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助LJR采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609098
求助须知:如何正确求助?哪些是违规求助? 4693856
关于积分的说明 14879718
捐赠科研通 4719158
什么是DOI,文献DOI怎么找? 2544656
邀请新用户注册赠送积分活动 1509595
关于科研通互助平台的介绍 1472917