Remote Sensing Image Change Detection Based on Fully Convolutional Network With Pyramid Attention

变更检测 棱锥(几何) 计算机科学 卷积神经网络 遥感 特征提取 人工智能 深度学习 特征(语言学) 模式识别(心理学) 地理 数学 几何学 语言学 哲学
作者
Shujun Li,Lianzhi Huo
标识
DOI:10.1109/igarss47720.2021.9554522
摘要

Change detection technology based on remote sensing image can monitor the changes of ecological environment, which is of great significance for the study of the interaction between human and natural environment. However, it's difficult to automatically mine useful change information in traditional methods with the explosive growth of remote sensing data. With the development of deep learning methods, change detection of remote sensing images based on fully convolutional neural network has become one of the research hotspots to extract change information automatically. Recently, two advanced deep learning models, FC-EF and FC-Siam-diff, have been proposed for change detection of bi-temporal remote sensing images. To dig deeper multiscale and multilevel features thoroughly and improve detection accuracy, pyramid attention layer is added and an improved fully convolutional network FC-Siam-diff-PA is proposed in this paper. By introducing pyramid attention layer, the multiscale change information is further extracted from the difference feature map processed by the encoder structure of original network. Experiments were performed in the region of Xishuangbanna, Yunnan Province, China. Experimental results show that the proposed method performs better than the FC-EF network model and FC-Siam-diff model in change information extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助washy采纳,获得10
1秒前
兴奋的乐巧完成签到,获得积分10
2秒前
听说现在你成了大锦鲤完成签到,获得积分10
2秒前
糊涂的冰凡完成签到,获得积分10
3秒前
4秒前
大模型应助HMG1COA采纳,获得10
4秒前
4秒前
6秒前
6秒前
丘山发布了新的文献求助10
6秒前
8秒前
8秒前
ding应助Friday采纳,获得10
9秒前
酷波er应助PatrickWu采纳,获得10
9秒前
好好发布了新的文献求助10
10秒前
Charles关注了科研通微信公众号
10秒前
糊涂塌客完成签到,获得积分10
10秒前
科研助手6应助郭晗采纳,获得10
11秒前
heyihao应助郭晗采纳,获得10
11秒前
大模型应助药毛儿采纳,获得10
12秒前
我不是阿良完成签到,获得积分20
12秒前
1351567822应助无限雨南采纳,获得10
12秒前
liujian发布了新的文献求助10
13秒前
小嘎完成签到 ,获得积分10
14秒前
科研通AI2S应助我不是阿良采纳,获得10
15秒前
CodeCraft应助魔幻诗兰采纳,获得10
16秒前
hongfangpan完成签到 ,获得积分10
16秒前
tramp应助出租耳朵采纳,获得10
16秒前
彩云追月完成签到 ,获得积分10
18秒前
无花果应助风清扬采纳,获得10
19秒前
Fan发布了新的文献求助10
22秒前
平常的紫蓝完成签到,获得积分10
23秒前
24秒前
24秒前
烟花应助111111采纳,获得10
26秒前
河马完成签到,获得积分10
26秒前
科研助手6应助张雯思采纳,获得10
27秒前
27秒前
药毛儿发布了新的文献求助10
29秒前
一洼清泉完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028