Quantitative detection of azodicarbonamide in wheat flour by near-infrared spectroscopy based on two-step feature selection

特征选择 数学 特征(语言学) 模式识别(心理学) 均方误差 预处理器 人工智能 随机森林 样品(材料) 近红外光谱 统计 计算机科学 化学 色谱法 量子力学 物理 哲学 语言学
作者
Chengsi Du,Laijun Sun,Hongyi Bai,Yi Liu,Jun Yang,Xing Wang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:219: 104445-104445 被引量:10
标识
DOI:10.1016/j.chemolab.2021.104445
摘要

Excessive azodicarbonamide (ADA) in flour would do harm to the health of consumers. How to quickly and accurately detect the content of ADA in flour was of great significance. Based on the rapid, efficient and non-destructive advantages of near-infrared spectroscopy (NIRS) technology in material detection, the NIRS technology was used to quantitatively detect ADA in 101 wheat flour samples in this study. Firstly, after eliminating 1 abnormal sample with isolation forest (IF) method, the remaining 100 sample sets were divided into the training set and the prediction set using sample set partitioning based on joint x-y distances (SPXY) method. Then, the prediction performance of the three models under various spectral preprocessing methods and combined methods were compared. Among them, the performance of random forest (RF) model combined with second derivative (2D) was proved to be the best. Then, RReliefF and maximal information coefficient (MIC) were used for the first-step feature selection, respectively. On this basis, the second-step feature selection was performed based on the elastic net (EN). Among them, the performance of MIC ​+ ​EN was proved to be the best, and 40 effective features were selected. Finally, the 2D ​+ ​MIC ​+ ​EN ​+ ​RF model was established to predict the content of ADA in wheat flour. The coefficient of determination (R2), root mean square error of prediction (RMSEP) and relative percent difference (RPD) of the model on the prediction set reached 0.99814, 2.91345, and 23.54332, respectively. The results showed that NIRS technology could accurately detect the content of ADA in flour, and the two-step feature selection method could be effectively used for feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siina发布了新的文献求助10
1秒前
拓跋妙梦发布了新的文献求助10
1秒前
1秒前
大模型应助PanLi采纳,获得30
2秒前
3秒前
南方有故人完成签到,获得积分10
3秒前
3秒前
RocaY发布了新的文献求助10
3秒前
长情的千愁完成签到,获得积分10
5秒前
Jason完成签到 ,获得积分10
7秒前
石石刘完成签到 ,获得积分10
7秒前
8秒前
科研通AI6.1应助luo采纳,获得10
9秒前
风中远山完成签到,获得积分10
9秒前
若杉完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
A羊_完成签到,获得积分20
10秒前
Pilule完成签到 ,获得积分10
10秒前
FashionBoy应助Isaiah采纳,获得10
10秒前
科研通AI6.1应助柔弱雅彤采纳,获得10
10秒前
11秒前
11秒前
11秒前
烟花应助阿紫采纳,获得10
12秒前
12秒前
佳丽完成签到,获得积分10
12秒前
mltyyds完成签到,获得积分10
13秒前
14秒前
14秒前
勤恳易谙发布了新的文献求助10
14秒前
高兴的平露完成签到 ,获得积分10
14秒前
hankpotter完成签到,获得积分10
14秒前
cloudz完成签到,获得积分10
15秒前
香蕉觅云应助LYB吕采纳,获得10
15秒前
ql关闭了ql文献求助
15秒前
16秒前
Phoo发布了新的文献求助10
16秒前
16秒前
芬栀发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106