Quantitative detection of azodicarbonamide in wheat flour by near-infrared spectroscopy based on two-step feature selection

特征选择 数学 特征(语言学) 模式识别(心理学) 均方误差 预处理器 人工智能 随机森林 样品(材料) 近红外光谱 统计 计算机科学 化学 色谱法 量子力学 物理 哲学 语言学
作者
Chengsi Du,Laijun Sun,Hongyi Bai,Yi Liu,Jun Yang,Xing Wang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:219: 104445-104445 被引量:10
标识
DOI:10.1016/j.chemolab.2021.104445
摘要

Excessive azodicarbonamide (ADA) in flour would do harm to the health of consumers. How to quickly and accurately detect the content of ADA in flour was of great significance. Based on the rapid, efficient and non-destructive advantages of near-infrared spectroscopy (NIRS) technology in material detection, the NIRS technology was used to quantitatively detect ADA in 101 wheat flour samples in this study. Firstly, after eliminating 1 abnormal sample with isolation forest (IF) method, the remaining 100 sample sets were divided into the training set and the prediction set using sample set partitioning based on joint x-y distances (SPXY) method. Then, the prediction performance of the three models under various spectral preprocessing methods and combined methods were compared. Among them, the performance of random forest (RF) model combined with second derivative (2D) was proved to be the best. Then, RReliefF and maximal information coefficient (MIC) were used for the first-step feature selection, respectively. On this basis, the second-step feature selection was performed based on the elastic net (EN). Among them, the performance of MIC ​+ ​EN was proved to be the best, and 40 effective features were selected. Finally, the 2D ​+ ​MIC ​+ ​EN ​+ ​RF model was established to predict the content of ADA in wheat flour. The coefficient of determination (R2), root mean square error of prediction (RMSEP) and relative percent difference (RPD) of the model on the prediction set reached 0.99814, 2.91345, and 23.54332, respectively. The results showed that NIRS technology could accurately detect the content of ADA in flour, and the two-step feature selection method could be effectively used for feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
退后分裂搁浅完成签到,获得积分10
刚刚
香蕉靖雁发布了新的文献求助10
3秒前
4秒前
万能图书馆应助Ado采纳,获得10
4秒前
科目三应助轻松的剑采纳,获得30
4秒前
所所应助虚幻羊采纳,获得10
4秒前
6秒前
大模型应助星期八采纳,获得10
7秒前
8秒前
qingzhiwu完成签到,获得积分10
9秒前
无花果应助高挑的梦芝采纳,获得10
9秒前
XZZH完成签到,获得积分10
10秒前
蝈蝈蝈完成签到 ,获得积分10
10秒前
12秒前
12秒前
Ava应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
13秒前
kami完成签到,获得积分10
16秒前
mochi关注了科研通微信公众号
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
威武的蘑菇完成签到,获得积分10
19秒前
hxxxxxuan完成签到,获得积分10
20秒前
星期八发布了新的文献求助10
20秒前
大个应助Tomsen采纳,获得10
21秒前
薇薇早睡早起完成签到,获得积分10
21秒前
温暖幻桃发布了新的文献求助10
22秒前
Akim应助Yan采纳,获得10
22秒前
乐乐应助研友_LJGoXn采纳,获得10
24秒前
_Yushan发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003