Delta Hedging of Derivatives using Deep Reinforcement Learning

强化学习 期货合约 计算机科学 经济 钢筋 树篱 人工智能
作者
Alexandru Giurca,Svetlana Borovkova
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3847272
摘要

Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
terryok完成签到,获得积分10
刚刚
隐形曼青应助wuyan采纳,获得10
1秒前
tyy发布了新的文献求助10
1秒前
1秒前
2秒前
xxt完成签到,获得积分10
3秒前
淅淅沥沥发布了新的文献求助10
3秒前
3秒前
喜喜完成签到,获得积分10
3秒前
4秒前
SciGPT应助tuyoyo采纳,获得10
5秒前
欣喜战斗机完成签到,获得积分10
5秒前
F冯完成签到,获得积分10
5秒前
6秒前
JokerLove完成签到,获得积分20
6秒前
6秒前
爬不起来发布了新的文献求助10
6秒前
7秒前
Ava应助mdjinij采纳,获得10
7秒前
赘婿应助ypeng采纳,获得30
7秒前
甜甜圈发布了新的文献求助10
7秒前
浮游应助瓜瓜采纳,获得10
8秒前
史绪典发布了新的文献求助10
8秒前
buno完成签到,获得积分0
9秒前
zzzzz完成签到,获得积分10
9秒前
万能图书馆应助gulu采纳,获得10
11秒前
11秒前
zhuzhu发布了新的文献求助10
12秒前
why完成签到 ,获得积分10
12秒前
12秒前
景行发布了新的文献求助10
13秒前
13秒前
13秒前
赵珺发布了新的文献求助10
13秒前
13秒前
buno发布了新的文献求助10
13秒前
14秒前
fg2477完成签到,获得积分10
14秒前
可爱的函函应助付品聪采纳,获得10
14秒前
海棠发布了新的文献求助10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143282
求助须知:如何正确求助?哪些是违规求助? 4341301
关于积分的说明 13520336
捐赠科研通 4181578
什么是DOI,文献DOI怎么找? 2293046
邀请新用户注册赠送积分活动 1293615
关于科研通互助平台的介绍 1236317