Delta Hedging of Derivatives using Deep Reinforcement Learning

强化学习 期货合约 计算机科学 经济 钢筋 树篱 人工智能
作者
Alexandru Giurca,Svetlana Borovkova
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3847272
摘要

Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
paparazzi221应助Cimon采纳,获得50
刚刚
renhu发布了新的文献求助10
刚刚
pluto应助呆萌的小海豚采纳,获得10
1秒前
虽动烟火完成签到,获得积分10
2秒前
淡定完成签到,获得积分20
2秒前
GRG完成签到 ,获得积分10
2秒前
Jason完成签到 ,获得积分10
3秒前
启宁完成签到,获得积分10
4秒前
淡定发布了新的文献求助10
5秒前
风趣友瑶完成签到,获得积分10
5秒前
小土豆发布了新的文献求助10
5秒前
啾啾发布了新的文献求助10
6秒前
wefor完成签到 ,获得积分10
7秒前
酷波er应助rl_soccer采纳,获得10
8秒前
8秒前
你是我爹完成签到 ,获得积分10
9秒前
科研通AI2S应助呼啦呼啦采纳,获得10
10秒前
orixero应助淡定采纳,获得10
13秒前
13秒前
淡定的月半完成签到,获得积分10
14秒前
Lucas应助科研小白采纳,获得10
17秒前
18秒前
小耳朵有货完成签到 ,获得积分10
19秒前
咖啡豆应助淡定的月半采纳,获得10
20秒前
优秀白曼完成签到 ,获得积分10
21秒前
CodeCraft应助里新采纳,获得10
21秒前
今天发CNS了嘛完成签到,获得积分10
22秒前
科研通AI2S应助aaoo采纳,获得10
23秒前
不配.应助啾啾采纳,获得20
24秒前
24秒前
美朵1010完成签到 ,获得积分10
24秒前
25秒前
kaka091发布了新的文献求助10
29秒前
Cimon完成签到,获得积分10
29秒前
howl发布了新的文献求助10
29秒前
29秒前
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043