Delta Hedging of Derivatives using Deep Reinforcement Learning

强化学习 期货合约 计算机科学 经济 钢筋 树篱 人工智能
作者
Alexandru Giurca,Svetlana Borovkova
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3847272
摘要

Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
北北完成签到 ,获得积分10
2秒前
wanci应助tian采纳,获得10
2秒前
可爱邓邓完成签到 ,获得积分10
2秒前
2秒前
jor666完成签到,获得积分10
3秒前
传奇3应助D.D.采纳,获得10
3秒前
笨笨棒球应助科研通管家采纳,获得20
4秒前
大轩完成签到 ,获得积分10
4秒前
krathhong完成签到 ,获得积分10
6秒前
taipingyang完成签到,获得积分10
8秒前
ling_lz发布了新的文献求助10
8秒前
无聊的老姆完成签到 ,获得积分10
9秒前
碧蓝丹烟完成签到 ,获得积分10
10秒前
Jmoriarty完成签到,获得积分10
12秒前
12秒前
海森堡完成签到,获得积分10
13秒前
沐沐心完成签到 ,获得积分10
14秒前
王九八发布了新的文献求助10
14秒前
D.D.发布了新的文献求助10
15秒前
岚12完成签到 ,获得积分10
16秒前
GongSyi完成签到 ,获得积分10
17秒前
花园里的蒜完成签到 ,获得积分0
17秒前
panda完成签到,获得积分0
19秒前
犹豫的若完成签到,获得积分10
21秒前
陶醉的雪柳完成签到 ,获得积分10
28秒前
v3688e完成签到,获得积分10
31秒前
王九八发布了新的文献求助10
33秒前
35秒前
呆萌羊青完成签到,获得积分10
35秒前
36秒前
量子星尘发布了新的文献求助10
37秒前
38秒前
tingfeng发布了新的文献求助10
40秒前
一亩蔬菜完成签到,获得积分10
40秒前
李健春完成签到 ,获得积分10
46秒前
淡定的思松完成签到 ,获得积分10
48秒前
执着的忆雪完成签到 ,获得积分10
48秒前
时代更迭完成签到 ,获得积分10
49秒前
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960158
求助须知:如何正确求助?哪些是违规求助? 3506308
关于积分的说明 11128989
捐赠科研通 3238480
什么是DOI,文献DOI怎么找? 1789744
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095