离子电导率
电解质
阳极
材料科学
化学工程
阴极
接触电阻
离子键合
电极
电池(电)
电导率
电化学
离子
纳米技术
化学
图层(电子)
有机化学
工程类
物理
物理化学
功率(物理)
量子力学
作者
Jian Li,Peifeng Yu,Shuting Zhang,Zulong Wen,Yuhao Wen,Wuyi Zhou,Xianming Dong,Yingliang Liu,Yeru Liang
标识
DOI:10.1016/j.jcis.2021.05.023
摘要
Flexible aqueous battery is considered to be one of the most promising energy storage devices for powering flexible electronics. However, inferior interfacial compatibility in electrode–electrolyte interfaces and inefficient ionic channel of electrolytes usually result in potential troubles when applied in practical applications. Herein, we report a mild synthetic route to a sodium lignosulfonate-polyacrylamide hydrogel electrolyte with a high adhesiveness to achieve low electrode–electrolyte interfacial resistance and fast ionic conduction. Comprehensive experiments show that the catechol groups from sodium lignosulfonate demonstrate strong interactions with both cathode and anode materials, and thus greatly reduce the contact resistances across the electrodes. Meanwhile, the existence of sulfonate groups significantly enhances the ionic conductivity of the hydrogel electrolyte. Benefiting from this design, a low ohmic resistance of 3.8 Ω (i.e., 11.4 Ω cm2 ), a low charge transfer resistance of 22.5 Ω (i.e., 67.5 Ω cm2 ), a high ionic conductivity of 31.1 mS cm−1 as well as a 100% capacity retention upon harsh bending deformation can be realized in the flexible zinc ion battery, which are significantly superior to those in the traditional candidates. The present investigation provides new insight into addressing the interfacial issue plaguing flexible energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI