清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative prediction of histologic grade in invasive breast cancer by using contrast-enhanced spectral mammography-based radiomics

医学 无线电技术 乳腺癌 置信区间 乳腺摄影术 放射科 逻辑回归 特征选择 Lasso(编程语言) 接收机工作特性 人工智能 核医学 癌症 内科学 计算机科学 万维网
作者
Ning Mao,Zimei Jiao,Shaofeng Duan,Cong Xu,Haizhu Xie
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (5): 763-772 被引量:11
标识
DOI:10.3233/xst-210886
摘要

OBJECTIVE: To develop and validate a radiomics model based on contrast-enhanced spectral mammography (CESM), and preoperatively discriminate low-grade (grade I/II) and high-grade (grade III) invasive breast cancer. METHOD: A total of 205 patients with CESM examination and pathologically confirmed invasive breast cancer were retrospectively enrolled. We randomly divided patients into two independent sets namely, training set (164 patients) and test set (41 patients) with a ratio of 8:2. Radiomics features were extracted from the low-energy and subtracted images. The least absolute shrinkage and selection operator (LASSO) logistic regression were established for feature selection, which were then utilized to construct three classification models namely, low energy, subtracted images and their combined model to discriminate high- and low-grade invasive breast cancer. Receiver operator characteristic (ROC) curves were used to confirm performance of three models in training set. The clinical usefulness was evaluated by using decision curve analysis (DCA). An independent test set was used to confirm the discriminatory power of the models. To test robustness of the result, we used 100 times LGOCV (leave group out cross validation) to validate three models. RESULTS: From initial radiomics feature pool, 17 and 11 features were selected for low-energy image and subtracted image, respectively. The combined model using 28 features showed the best performance for preoperatively evaluating the histologic grade of invasive breast cancer, with an area under the curve, AUC = 0.88, and 95%confidence interval [CI] 0.85 to 0.92 in the training set and AUC = 0.80 (95%CI 0.67 to 0.92) in the test set. The mean AUC of LGOCV is 0.82. CONCLUSIONS: CESM-based radiomics model is a non-invasive predictive tool that demonstrates good application prospects in preoperatively predicting histological grade of invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ming完成签到,获得积分10
13秒前
28秒前
Muncy完成签到 ,获得积分10
33秒前
陈曦完成签到,获得积分10
58秒前
1分钟前
YYMM发布了新的文献求助10
1分钟前
1分钟前
三千年的成长完成签到 ,获得积分10
1分钟前
Henry.g完成签到,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
打工人不酷完成签到 ,获得积分10
2分钟前
SiDi完成签到,获得积分10
2分钟前
友好寻琴完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分10
2分钟前
ZJY发布了新的文献求助10
2分钟前
搜集达人应助YYMM采纳,获得10
3分钟前
震动的听枫完成签到,获得积分10
3分钟前
3分钟前
DocChen发布了新的文献求助10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
Regulusyang完成签到,获得积分10
4分钟前
章铭-111完成签到 ,获得积分10
4分钟前
eee发布了新的文献求助20
4分钟前
肆肆完成签到,获得积分10
5分钟前
jackone完成签到,获得积分10
6分钟前
6分钟前
YYMM发布了新的文献求助10
6分钟前
丘比特应助YYMM采纳,获得10
6分钟前
eee发布了新的文献求助10
7分钟前
wi发布了新的文献求助10
7分钟前
wx1完成签到 ,获得积分0
7分钟前
三磷酸腺苷完成签到 ,获得积分10
8分钟前
汉堡包应助zzf采纳,获得10
8分钟前
8分钟前
zzf发布了新的文献求助10
8分钟前
张店烹鱼宴完成签到,获得积分10
9分钟前
9分钟前
eee完成签到,获得积分10
10分钟前
10分钟前
Rick完成签到,获得积分10
13分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294595
求助须知:如何正确求助?哪些是违规求助? 2930496
关于积分的说明 8446182
捐赠科研通 2602765
什么是DOI,文献DOI怎么找? 1420704
科研通“疑难数据库(出版商)”最低求助积分说明 660667
邀请新用户注册赠送积分活动 643433