On the use of information fusion techniques to improve information quality: Taxonomy, opportunities and challenges

计算机科学 信息质量 质量(理念) 模糊性 过程(计算) 数据科学 领域(数学) 信息系统 传感器融合 信息融合 风险分析(工程) 管理科学 人工智能 模糊逻辑 工程类 电气工程 哲学 操作系统 纯数学 认识论 医学 数学
作者
Raúl Gutiérrez,Víctor Rampérez,Horacio Paggi,Juan A. Lara,Javier Soriano
出处
期刊:Information Fusion [Elsevier]
卷期号:78: 102-137 被引量:18
标识
DOI:10.1016/j.inffus.2021.09.017
摘要

The information fusion field has recently been attracting a lot of interest within the scientific community, as it provides, through the combination of different sources of heterogeneous information, a fuller and/or more precise understanding of the real world than can be gained considering the above sources separately. One of the fundamental aims of computer systems, and especially decision support systems, is to assure that the quality of the information they process is high. There are many different approaches for this purpose, including information fusion. Information fusion is currently one of the most promising methods. It is particularly useful under circumstances where quality might be compromised, for example, either intrinsically due to imperfect information (vagueness, uncertainty, …) or because of limited resources (energy, time, …). In response to this goal, a wide range of research has been undertaken over recent years. To date, the literature reviews in this field have focused on problem-specific issues and have been circumscribed to certain system types. Therefore, there is no holistic and systematic knowledge of the state of the art to help establish the steps to be taken in the future. In particular, aspects like what impact different information fusion methods have on information quality, how information quality is characterised, measured and evaluated in different application domains depending on the problem data type or whether fusion is designed as a flexible process capable of adapting to changing system circumstances and their intrinsically limited resources have not been addressed. This paper aims precisely to review the literature on research into the use of information fusion techniques specifically to improve information quality, analysing the above issues in order to identify a series of challenges and research directions, which are presented in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyz666发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
坚强的广山应助iNk采纳,获得200
4秒前
热情的听露完成签到,获得积分10
5秒前
6秒前
6秒前
穆紫应助money采纳,获得10
6秒前
穆紫应助研友_kngjrL采纳,获得10
7秒前
稳重的鼠标完成签到,获得积分10
7秒前
林源枫完成签到,获得积分10
7秒前
aaa发布了新的文献求助10
7秒前
8秒前
pot发布了新的文献求助10
8秒前
独角兽完成签到 ,获得积分10
9秒前
Loscipy发布了新的文献求助10
10秒前
茜134发布了新的文献求助10
12秒前
周凡淇发布了新的文献求助10
12秒前
不配.应助jazzmantan采纳,获得10
14秒前
Seven完成签到 ,获得积分10
15秒前
大个应助xiaoxiao采纳,获得10
15秒前
研友_Lw4Ngn发布了新的文献求助10
15秒前
16秒前
pialala完成签到 ,获得积分10
16秒前
甜甜发布了新的文献求助10
18秒前
我是老大应助dl采纳,获得10
18秒前
无心的太君完成签到,获得积分10
19秒前
没有逗发布了新的文献求助10
19秒前
20秒前
苹果花发布了新的文献求助10
21秒前
21秒前
西伯利亚彪悍前妻完成签到 ,获得积分10
21秒前
21秒前
CipherSage应助甜甜采纳,获得30
24秒前
annicaker完成签到,获得积分10
24秒前
英俊的铭应助聪聪采纳,获得20
25秒前
25秒前
研友_VZG7GZ应助紫易采纳,获得30
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323