On the use of information fusion techniques to improve information quality: Taxonomy, opportunities and challenges

计算机科学 信息质量 质量(理念) 模糊性 过程(计算) 数据科学 领域(数学) 信息系统 传感器融合 信息融合 风险分析(工程) 管理科学 人工智能 模糊逻辑 工程类 电气工程 哲学 操作系统 纯数学 认识论 医学 数学
作者
Raúl Gutiérrez,Víctor Rampérez,Horacio Paggi,Juan A. Lara,Javier Soriano
出处
期刊:Information Fusion [Elsevier BV]
卷期号:78: 102-137 被引量:18
标识
DOI:10.1016/j.inffus.2021.09.017
摘要

The information fusion field has recently been attracting a lot of interest within the scientific community, as it provides, through the combination of different sources of heterogeneous information, a fuller and/or more precise understanding of the real world than can be gained considering the above sources separately. One of the fundamental aims of computer systems, and especially decision support systems, is to assure that the quality of the information they process is high. There are many different approaches for this purpose, including information fusion. Information fusion is currently one of the most promising methods. It is particularly useful under circumstances where quality might be compromised, for example, either intrinsically due to imperfect information (vagueness, uncertainty, …) or because of limited resources (energy, time, …). In response to this goal, a wide range of research has been undertaken over recent years. To date, the literature reviews in this field have focused on problem-specific issues and have been circumscribed to certain system types. Therefore, there is no holistic and systematic knowledge of the state of the art to help establish the steps to be taken in the future. In particular, aspects like what impact different information fusion methods have on information quality, how information quality is characterised, measured and evaluated in different application domains depending on the problem data type or whether fusion is designed as a flexible process capable of adapting to changing system circumstances and their intrinsically limited resources have not been addressed. This paper aims precisely to review the literature on research into the use of information fusion techniques specifically to improve information quality, analysing the above issues in order to identify a series of challenges and research directions, which are presented in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
奶茶完成签到,获得积分10
1秒前
liu完成签到,获得积分10
2秒前
2秒前
昂口3发布了新的文献求助10
2秒前
高挑的尔琴完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
盈盈一水间完成签到,获得积分10
2秒前
不可思议的止血钳完成签到,获得积分10
3秒前
jzmulyl发布了新的文献求助10
3秒前
qi发布了新的文献求助10
4秒前
4秒前
4秒前
天气完成签到,获得积分20
4秒前
meimale发布了新的文献求助10
5秒前
5秒前
CodeCraft应助Lisa采纳,获得10
5秒前
落后以旋完成签到,获得积分10
5秒前
66wudi完成签到,获得积分10
6秒前
6秒前
xiaowei666完成签到,获得积分10
7秒前
7秒前
文献小白发布了新的文献求助10
8秒前
柠安发布了新的文献求助10
8秒前
落后以旋发布了新的文献求助10
8秒前
Lucas应助孤独烤鸡采纳,获得10
8秒前
喻明辉完成签到,获得积分10
9秒前
英俊的铭应助Tmac采纳,获得10
9秒前
在水一方应助Schwarz采纳,获得30
10秒前
10秒前
11秒前
yanyanyan发布了新的文献求助20
11秒前
yznfly应助tanglu采纳,获得100
12秒前
SuperZzz发布了新的文献求助50
12秒前
Wei_Li发布了新的文献求助10
12秒前
13秒前
13秒前
小二郎应助明昼采纳,获得10
13秒前
文献小白完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306