On the use of information fusion techniques to improve information quality: Taxonomy, opportunities and challenges

计算机科学 信息质量 质量(理念) 模糊性 过程(计算) 数据科学 领域(数学) 信息系统 传感器融合 信息融合 风险分析(工程) 管理科学 人工智能 模糊逻辑 工程类 电气工程 哲学 操作系统 纯数学 认识论 医学 数学
作者
Raúl Gutiérrez,Víctor Rampérez,Horacio Paggi,Juan A. Lara,Javier Soriano
出处
期刊:Information Fusion [Elsevier]
卷期号:78: 102-137 被引量:33
标识
DOI:10.1016/j.inffus.2021.09.017
摘要

The information fusion field has recently been attracting a lot of interest within the scientific community, as it provides, through the combination of different sources of heterogeneous information, a fuller and/or more precise understanding of the real world than can be gained considering the above sources separately. One of the fundamental aims of computer systems, and especially decision support systems, is to assure that the quality of the information they process is high. There are many different approaches for this purpose, including information fusion. Information fusion is currently one of the most promising methods. It is particularly useful under circumstances where quality might be compromised, for example, either intrinsically due to imperfect information (vagueness, uncertainty, …) or because of limited resources (energy, time, …). In response to this goal, a wide range of research has been undertaken over recent years. To date, the literature reviews in this field have focused on problem-specific issues and have been circumscribed to certain system types. Therefore, there is no holistic and systematic knowledge of the state of the art to help establish the steps to be taken in the future. In particular, aspects like what impact different information fusion methods have on information quality, how information quality is characterised, measured and evaluated in different application domains depending on the problem data type or whether fusion is designed as a flexible process capable of adapting to changing system circumstances and their intrinsically limited resources have not been addressed. This paper aims precisely to review the literature on research into the use of information fusion techniques specifically to improve information quality, analysing the above issues in order to identify a series of challenges and research directions, which are presented in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助清爽的如波采纳,获得10
1秒前
niceweiwei完成签到 ,获得积分10
2秒前
2秒前
Sept完成签到,获得积分10
2秒前
lit完成签到 ,获得积分10
3秒前
yqq38发布了新的文献求助10
3秒前
Yuki完成签到,获得积分10
3秒前
籽籽完成签到 ,获得积分10
4秒前
星鑫完成签到,获得积分10
5秒前
稚北森林发布了新的文献求助10
5秒前
Oculus发布了新的文献求助200
6秒前
7秒前
舒适可乐完成签到,获得积分10
9秒前
gfreezer完成签到,获得积分10
10秒前
yqq38完成签到,获得积分10
10秒前
Ava应助我先睡了采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
给我一篇文献吧完成签到 ,获得积分10
11秒前
YaoHui发布了新的文献求助30
11秒前
www完成签到,获得积分10
12秒前
硕心发布了新的文献求助10
13秒前
13秒前
清爽的如波完成签到,获得积分10
13秒前
酷波er应助woshiwuziq采纳,获得10
15秒前
17秒前
18秒前
服部平次发布了新的文献求助10
21秒前
dd完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
23秒前
所所应助liars采纳,获得10
23秒前
luna发布了新的文献求助10
24秒前
24秒前
寻道图强应助遇上就这样吧采纳,获得1888
25秒前
25秒前
暴躁的马里奥完成签到,获得积分10
25秒前
唐诗阅完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708852
求助须知:如何正确求助?哪些是违规求助? 5190821
关于积分的说明 15255184
捐赠科研通 4861785
什么是DOI,文献DOI怎么找? 2609650
邀请新用户注册赠送积分活动 1560146
关于科研通互助平台的介绍 1517874