清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Metabolic regulation of the cancer-immunity cycle

免疫监视 免疫系统 免疫检查点 肿瘤微环境 免疫学 癌变 生物 癌症 免疫 免疫疗法 癌症研究 遗传学
作者
Luis F. Somarribas Patterson,Santosha A. Vardhana
出处
期刊:Trends in Immunology [Elsevier BV]
卷期号:42 (11): 975-993 被引量:48
标识
DOI:10.1016/j.it.2021.09.002
摘要

Elevated tumor glycolysis and lactate production are robust suppressors of antitumor immunity in multiple cancer subtypes. Loss of mitochondrial function is a hallmark of CD8+ T cell exhaustion and might be a promising metabolic target for improving patient responses to CAR-T and/or ICB therapy, pending future investigations. IL4I1-driven tryptophan catabolism and aryl hydrocarbon receptor activation may constitute a resistance mechanism to ICB and/or IDO1 inhibitors across cancer subtypes. We propose that the metabolic profile of the TME promotes both initiation and disruption of the cancer-immunity cycle. Hence, targeting cellular metabolism in the TME may improve responsiveness to T cell-based immunotherapies. The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies. The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies. catabolic pathway that oxidizes glucose to pyruvate and subsequently reduces pyruvate to lactate. The latter step often occurs in anaerobic or hypoxic conditions, but under aerobic conditions in rapidly proliferating cells. programmed cell death caused by detachment of a cell from the extracellular matrix. target cyclin-dependent kinase 4 and 6; known for their ability to inhibit progression through the G1 phase of the cell cycle and, consequently, inhibit cell proliferation, including that of cancer cells. phenotype adopted by proliferating cells in response to stress or damage; characterized by an arrest in the cell cycle. T cell genetically engineered to increase antigen-specific T cell recognition of tumors. CARs contain an extracellular antigen-recognition domain and up to three intracellular signaling domains that activate T cells. Certain CAR T cells may be adoptively transferred to patients. molecules released by damage or dying cells that elicit immune responses through binding pattern recognition receptors. hydrolyzes nucleotide anhydride or ester bonds, producing nucleosides. catabolic pathway that promotes the oxidation of one molecule of glucose and produces two molecules of pyruvate. elevated number of somatic mutations in the genome of a cell. component of an inhibitory pathway intrinsic to the immune system that regulates the duration and amplitude of immune responses. antagonism of immune checkpoint function via therapeutic agents, mainly antibodies and inhibitors. ability of an organism to elicit an adaptive immune response. post-translational modification of proteins comprising the covalent addition of lactate to an amino acid residue (hitherto described for lysine) of a protein. Histone lactylation has been reported to epigenetically modulate gene expression. subset of genes expressed by macrophages that differentiate and acquire the so-called 'M2' immunosuppressive/wound-healing phenotype. tumors bearing inactivating mutations in genes encoding proteins involved in DNA mismatch repair. stimulated by mutations in one or more proto-oncogenes or tumor suppressor gene-encoded proteins. subset of exhausted CD8+T cells characterized by TCF-1+ and PD-1+ expression. These cells have stem cell-like properties (e.g., self-renewal capacity) and increased effector function compared with terminally exhausted CD8+ T cells. oxygen-containing molecules that are, or can give rise to, free radicals. ROS can damage and alter function of nucleotides, proteins, and membrane lipids. resemble those of stem cells, such a self-renewal capacity and the ability to differentiate into other cells. tumors exhibiting very poor infiltration of CD8+ T cells, especially in cancer cell-rich areas. T cell fate characterized by a progressive decrease of effector functions, elevated and sustained expression of immune inhibitory receptors, impaired memory and self-renewal capacity, transcriptional and epigenetic reprogramming, and altered metabolic profile. inheritable alteration in the DNA of a cell that involves the substitution of a nucleotide containing a purine for a pyrimidine or vice versa. heterogenous population of cancer cells (parenchyma), non-malignant cells (stromal cells), extracellular matrix, and signaling molecules in specific areas of tumors. number of cancer cell-specific nonsynonymous somatic mutations in a tumor, per megabase of a genetic region of interest. Such mutations drive the formation of neoantigens (i.e., antigens derived from novel mutated peptides or proteins and, therefore, are not present in the normal genome). metabolic phenotype caused by altered expression of enzymes and transporters associated with the urea cycle; limits the function of the urea cycle, promoting diversion of nitrogen toward pyrimidine synthesis, increasing mutagenesis, cell proliferation, and ICB responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanghe完成签到,获得积分10
8秒前
炳灿完成签到 ,获得积分10
15秒前
21秒前
hxd_BIGpaperer完成签到,获得积分10
27秒前
小鱼女侠完成签到 ,获得积分10
28秒前
卜哥完成签到 ,获得积分10
31秒前
yangjinru完成签到 ,获得积分10
47秒前
甜美的吹完成签到 ,获得积分10
1分钟前
1分钟前
Kevin Li完成签到,获得积分10
1分钟前
gengsumin完成签到,获得积分10
1分钟前
llll完成签到 ,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
2分钟前
LiugQin完成签到,获得积分10
2分钟前
千空完成签到 ,获得积分10
2分钟前
无一完成签到 ,获得积分0
2分钟前
Owen应助Guozixin采纳,获得10
2分钟前
11关闭了11文献求助
2分钟前
zm完成签到 ,获得积分10
2分钟前
l老王完成签到 ,获得积分0
2分钟前
zhilianghui0807完成签到 ,获得积分0
2分钟前
顾矜应助十分十分佳采纳,获得10
2分钟前
MISA完成签到 ,获得积分10
2分钟前
俊逸的香萱完成签到 ,获得积分10
3分钟前
11发布了新的文献求助30
3分钟前
3分钟前
迷人的沛山完成签到 ,获得积分10
3分钟前
3分钟前
简单完成签到 ,获得积分10
3分钟前
研友_LN25rL完成签到,获得积分10
3分钟前
勤恳的语蝶完成签到 ,获得积分10
4分钟前
顾矜应助我亦化身东海去采纳,获得10
4分钟前
枯叶蝶完成签到 ,获得积分10
4分钟前
笨蛋美女完成签到 ,获得积分10
4分钟前
拼搏书琴完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926941
求助须知:如何正确求助?哪些是违规求助? 4196392
关于积分的说明 13032711
捐赠科研通 3968832
什么是DOI,文献DOI怎么找? 2175128
邀请新用户注册赠送积分活动 1192288
关于科研通互助平台的介绍 1102773