Metabolic regulation of the cancer-immunity cycle

免疫监视 免疫系统 免疫检查点 肿瘤微环境 免疫学 癌变 生物 癌症 免疫 免疫疗法 癌症研究 遗传学
作者
Luis F. Somarribas Patterson,Santosha A. Vardhana
出处
期刊:Trends in Immunology [Elsevier BV]
卷期号:42 (11): 975-993 被引量:48
标识
DOI:10.1016/j.it.2021.09.002
摘要

Elevated tumor glycolysis and lactate production are robust suppressors of antitumor immunity in multiple cancer subtypes. Loss of mitochondrial function is a hallmark of CD8+ T cell exhaustion and might be a promising metabolic target for improving patient responses to CAR-T and/or ICB therapy, pending future investigations. IL4I1-driven tryptophan catabolism and aryl hydrocarbon receptor activation may constitute a resistance mechanism to ICB and/or IDO1 inhibitors across cancer subtypes. We propose that the metabolic profile of the TME promotes both initiation and disruption of the cancer-immunity cycle. Hence, targeting cellular metabolism in the TME may improve responsiveness to T cell-based immunotherapies. The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies. The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies. catabolic pathway that oxidizes glucose to pyruvate and subsequently reduces pyruvate to lactate. The latter step often occurs in anaerobic or hypoxic conditions, but under aerobic conditions in rapidly proliferating cells. programmed cell death caused by detachment of a cell from the extracellular matrix. target cyclin-dependent kinase 4 and 6; known for their ability to inhibit progression through the G1 phase of the cell cycle and, consequently, inhibit cell proliferation, including that of cancer cells. phenotype adopted by proliferating cells in response to stress or damage; characterized by an arrest in the cell cycle. T cell genetically engineered to increase antigen-specific T cell recognition of tumors. CARs contain an extracellular antigen-recognition domain and up to three intracellular signaling domains that activate T cells. Certain CAR T cells may be adoptively transferred to patients. molecules released by damage or dying cells that elicit immune responses through binding pattern recognition receptors. hydrolyzes nucleotide anhydride or ester bonds, producing nucleosides. catabolic pathway that promotes the oxidation of one molecule of glucose and produces two molecules of pyruvate. elevated number of somatic mutations in the genome of a cell. component of an inhibitory pathway intrinsic to the immune system that regulates the duration and amplitude of immune responses. antagonism of immune checkpoint function via therapeutic agents, mainly antibodies and inhibitors. ability of an organism to elicit an adaptive immune response. post-translational modification of proteins comprising the covalent addition of lactate to an amino acid residue (hitherto described for lysine) of a protein. Histone lactylation has been reported to epigenetically modulate gene expression. subset of genes expressed by macrophages that differentiate and acquire the so-called 'M2' immunosuppressive/wound-healing phenotype. tumors bearing inactivating mutations in genes encoding proteins involved in DNA mismatch repair. stimulated by mutations in one or more proto-oncogenes or tumor suppressor gene-encoded proteins. subset of exhausted CD8+T cells characterized by TCF-1+ and PD-1+ expression. These cells have stem cell-like properties (e.g., self-renewal capacity) and increased effector function compared with terminally exhausted CD8+ T cells. oxygen-containing molecules that are, or can give rise to, free radicals. ROS can damage and alter function of nucleotides, proteins, and membrane lipids. resemble those of stem cells, such a self-renewal capacity and the ability to differentiate into other cells. tumors exhibiting very poor infiltration of CD8+ T cells, especially in cancer cell-rich areas. T cell fate characterized by a progressive decrease of effector functions, elevated and sustained expression of immune inhibitory receptors, impaired memory and self-renewal capacity, transcriptional and epigenetic reprogramming, and altered metabolic profile. inheritable alteration in the DNA of a cell that involves the substitution of a nucleotide containing a purine for a pyrimidine or vice versa. heterogenous population of cancer cells (parenchyma), non-malignant cells (stromal cells), extracellular matrix, and signaling molecules in specific areas of tumors. number of cancer cell-specific nonsynonymous somatic mutations in a tumor, per megabase of a genetic region of interest. Such mutations drive the formation of neoantigens (i.e., antigens derived from novel mutated peptides or proteins and, therefore, are not present in the normal genome). metabolic phenotype caused by altered expression of enzymes and transporters associated with the urea cycle; limits the function of the urea cycle, promoting diversion of nitrogen toward pyrimidine synthesis, increasing mutagenesis, cell proliferation, and ICB responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哈完成签到,获得积分10
刚刚
WatsonJiang完成签到,获得积分10
刚刚
hhan发布了新的文献求助10
1秒前
dunhuang完成签到,获得积分10
1秒前
冬至完成签到,获得积分10
1秒前
紧张的以山完成签到,获得积分10
1秒前
西升东落完成签到 ,获得积分10
1秒前
科研混子完成签到,获得积分10
1秒前
lixinlong完成签到,获得积分10
2秒前
之后再说咯完成签到 ,获得积分10
2秒前
Yurrrrt完成签到,获得积分10
2秒前
2秒前
飞0802完成签到,获得积分10
3秒前
菜菜鱼完成签到,获得积分10
3秒前
3秒前
4秒前
刘旦生完成签到,获得积分10
4秒前
LLY发布了新的文献求助10
4秒前
群青完成签到 ,获得积分10
4秒前
SciGPT应助无情白羊采纳,获得10
4秒前
九湖夷上完成签到,获得积分10
5秒前
sunnyxxq发布了新的文献求助10
5秒前
淡然水绿完成签到,获得积分10
5秒前
zonker完成签到,获得积分10
5秒前
paggyfight完成签到,获得积分10
5秒前
liukuangxu完成签到,获得积分10
6秒前
qwerhugo发布了新的文献求助10
6秒前
852应助Lina采纳,获得10
7秒前
7秒前
41完成签到,获得积分10
8秒前
北极星完成签到,获得积分10
8秒前
秋颦发布了新的文献求助10
8秒前
小林不熬夜完成签到,获得积分10
8秒前
泯恩仇完成签到,获得积分10
8秒前
科研小白完成签到,获得积分20
8秒前
阔达宝莹完成签到,获得积分20
9秒前
9秒前
sanages发布了新的文献求助10
9秒前
9秒前
123完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256776
求助须知:如何正确求助?哪些是违规求助? 4418917
关于积分的说明 13754171
捐赠科研通 4292127
什么是DOI,文献DOI怎么找? 2355327
邀请新用户注册赠送积分活动 1351803
关于科研通互助平台的介绍 1312558