Metabolic regulation of the cancer-immunity cycle

免疫监视 免疫系统 免疫检查点 肿瘤微环境 免疫学 癌变 生物 癌症 免疫 免疫疗法 癌症研究 遗传学
作者
Luis F. Somarribas Patterson,Santosha A. Vardhana
出处
期刊:Trends in Immunology [Elsevier BV]
卷期号:42 (11): 975-993 被引量:37
标识
DOI:10.1016/j.it.2021.09.002
摘要

Elevated tumor glycolysis and lactate production are robust suppressors of antitumor immunity in multiple cancer subtypes. Loss of mitochondrial function is a hallmark of CD8+ T cell exhaustion and might be a promising metabolic target for improving patient responses to CAR-T and/or ICB therapy, pending future investigations. IL4I1-driven tryptophan catabolism and aryl hydrocarbon receptor activation may constitute a resistance mechanism to ICB and/or IDO1 inhibitors across cancer subtypes. We propose that the metabolic profile of the TME promotes both initiation and disruption of the cancer-immunity cycle. Hence, targeting cellular metabolism in the TME may improve responsiveness to T cell-based immunotherapies. The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies. The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies. catabolic pathway that oxidizes glucose to pyruvate and subsequently reduces pyruvate to lactate. The latter step often occurs in anaerobic or hypoxic conditions, but under aerobic conditions in rapidly proliferating cells. programmed cell death caused by detachment of a cell from the extracellular matrix. target cyclin-dependent kinase 4 and 6; known for their ability to inhibit progression through the G1 phase of the cell cycle and, consequently, inhibit cell proliferation, including that of cancer cells. phenotype adopted by proliferating cells in response to stress or damage; characterized by an arrest in the cell cycle. T cell genetically engineered to increase antigen-specific T cell recognition of tumors. CARs contain an extracellular antigen-recognition domain and up to three intracellular signaling domains that activate T cells. Certain CAR T cells may be adoptively transferred to patients. molecules released by damage or dying cells that elicit immune responses through binding pattern recognition receptors. hydrolyzes nucleotide anhydride or ester bonds, producing nucleosides. catabolic pathway that promotes the oxidation of one molecule of glucose and produces two molecules of pyruvate. elevated number of somatic mutations in the genome of a cell. component of an inhibitory pathway intrinsic to the immune system that regulates the duration and amplitude of immune responses. antagonism of immune checkpoint function via therapeutic agents, mainly antibodies and inhibitors. ability of an organism to elicit an adaptive immune response. post-translational modification of proteins comprising the covalent addition of lactate to an amino acid residue (hitherto described for lysine) of a protein. Histone lactylation has been reported to epigenetically modulate gene expression. subset of genes expressed by macrophages that differentiate and acquire the so-called 'M2' immunosuppressive/wound-healing phenotype. tumors bearing inactivating mutations in genes encoding proteins involved in DNA mismatch repair. stimulated by mutations in one or more proto-oncogenes or tumor suppressor gene-encoded proteins. subset of exhausted CD8+T cells characterized by TCF-1+ and PD-1+ expression. These cells have stem cell-like properties (e.g., self-renewal capacity) and increased effector function compared with terminally exhausted CD8+ T cells. oxygen-containing molecules that are, or can give rise to, free radicals. ROS can damage and alter function of nucleotides, proteins, and membrane lipids. resemble those of stem cells, such a self-renewal capacity and the ability to differentiate into other cells. tumors exhibiting very poor infiltration of CD8+ T cells, especially in cancer cell-rich areas. T cell fate characterized by a progressive decrease of effector functions, elevated and sustained expression of immune inhibitory receptors, impaired memory and self-renewal capacity, transcriptional and epigenetic reprogramming, and altered metabolic profile. inheritable alteration in the DNA of a cell that involves the substitution of a nucleotide containing a purine for a pyrimidine or vice versa. heterogenous population of cancer cells (parenchyma), non-malignant cells (stromal cells), extracellular matrix, and signaling molecules in specific areas of tumors. number of cancer cell-specific nonsynonymous somatic mutations in a tumor, per megabase of a genetic region of interest. Such mutations drive the formation of neoantigens (i.e., antigens derived from novel mutated peptides or proteins and, therefore, are not present in the normal genome). metabolic phenotype caused by altered expression of enzymes and transporters associated with the urea cycle; limits the function of the urea cycle, promoting diversion of nitrogen toward pyrimidine synthesis, increasing mutagenesis, cell proliferation, and ICB responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书一卷完成签到,获得积分10
刚刚
林思琦完成签到,获得积分10
1秒前
xiayil完成签到 ,获得积分10
1秒前
1秒前
星月夜关注了科研通微信公众号
2秒前
cc发布了新的文献求助10
2秒前
fokuf完成签到 ,获得积分10
2秒前
搬砖人发布了新的文献求助10
2秒前
无花果应助xixi采纳,获得10
3秒前
天明完成签到,获得积分10
3秒前
3秒前
4秒前
Akashi发布了新的文献求助30
5秒前
完美世界应助ruiheng采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
脑洞疼应助gzy780819采纳,获得10
7秒前
自觉的汉堡完成签到,获得积分10
7秒前
jixin完成签到,获得积分10
8秒前
10秒前
苏silence发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
Jasper应助刘大米采纳,获得10
12秒前
归尘发布了新的文献求助10
13秒前
孙一完成签到,获得积分10
13秒前
lyan发布了新的文献求助50
13秒前
14秒前
所所应助qiaocolate采纳,获得10
15秒前
华仔应助an采纳,获得10
18秒前
LH完成签到,获得积分10
18秒前
lizhiqian2024发布了新的文献求助10
18秒前
18秒前
QingMRI发布了新的文献求助30
20秒前
20秒前
刘大米完成签到,获得积分20
21秒前
22秒前
碧阳的尔风完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
ruiheng发布了新的文献求助10
23秒前
香蕉觅云应助sunzhuxi采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667729
求助须知:如何正确求助?哪些是违规求助? 3226235
关于积分的说明 9768586
捐赠科研通 2936216
什么是DOI,文献DOI怎么找? 1608232
邀请新用户注册赠送积分活动 759549
科研通“疑难数据库(出版商)”最低求助积分说明 735404