Coupled Graph ODE for Learning Interacting System Dynamics

颂歌 计算机科学 常微分方程 理论计算机科学 图形 参数化复杂度 动力系统理论 系统动力学 算法 人工智能 微分方程 数学 应用数学 数学分析 物理 量子力学
作者
Zijie Huang,Yizhou Sun,Wei Wang
标识
DOI:10.1145/3447548.3467385
摘要

Many real-world systems such as social networks and moving planets are dynamic in nature, where a set of coupled objects are connected via the interaction graph and exhibit complex behavior along the time. For example, the COVID-19 pandemic can be considered as a dynamical system, where objects represent geographical locations (e.g., states) whose daily confirmed cases of infection evolve over time. Outbreak at one location may influence another location as people travel between these locations, forming a graph. Thus, how to model and predict the complex dynamics for these systems becomes a critical research problem. Existing work on modeling graph-structured data mostly assumes a static setting. How to handle dynamic graphs remains to be further explored. On one hand, features of objects change over time, influenced by the linked objects in the interaction graph. On the other hand, the graph itself can also evolve, where new interactions (links) may form and existing links may drop, which may in turn be affected by the dynamic features of objects. In this paper, we propose coupled graph ODE: a novel latent ordinary differential equation (ODE) generative model that learns the coupled dynamics of nodes and edges with a graph neural network (GNN) based ODE in a continuous manner. Our model consists of two coupled ODE functions for modeling the dynamics of edges and nodes based on their latent representations respectively. It employs a novel encoder parameterized by a GNN for inferring the initial states from historical data, which serves as the starting point of the predicted latent trajectories. Experiment results on the COVID-19 dataset and the simulated social network dataset demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Y.B.Cao完成签到,获得积分10
1秒前
小鑫完成签到,获得积分10
2秒前
zzx发布了新的文献求助10
2秒前
慕新完成签到,获得积分0
5秒前
天天快乐应助missinglotta采纳,获得10
5秒前
GHL完成签到,获得积分10
6秒前
帅气的雷完成签到,获得积分10
6秒前
木木完成签到,获得积分10
6秒前
鸽子完成签到,获得积分10
8秒前
八月完成签到,获得积分10
8秒前
8秒前
在封我就急眼啦完成签到,获得积分10
9秒前
浮尘完成签到 ,获得积分0
9秒前
11秒前
aaa完成签到,获得积分10
11秒前
高贵的思天完成签到,获得积分10
11秒前
灵巧的十八完成签到 ,获得积分10
13秒前
13秒前
成就宛完成签到,获得积分10
14秒前
Summer发布了新的文献求助10
14秒前
开心烨磊发布了新的文献求助10
15秒前
16秒前
18秒前
外向的易蓉完成签到 ,获得积分10
18秒前
osmanthus完成签到,获得积分10
18秒前
满城烟沙完成签到 ,获得积分0
20秒前
JIASHOUSHOU完成签到,获得积分10
20秒前
21秒前
21秒前
俭朴巨人发布了新的文献求助10
21秒前
胡hhhhhhhhhh发布了新的文献求助10
22秒前
callmecjh完成签到,获得积分10
22秒前
22秒前
23秒前
局外人完成签到,获得积分10
23秒前
在水一方应助开心烨磊采纳,获得10
23秒前
生信小菜鸟完成签到 ,获得积分10
23秒前
shiqi1108完成签到 ,获得积分10
23秒前
25秒前
頔頔哒哒发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761136
求助须知:如何正确求助?哪些是违规求助? 3305089
关于积分的说明 10132226
捐赠科研通 3019082
什么是DOI,文献DOI怎么找? 1657974
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754608