Influence of energy density on the microstructure and mechanical properties of GH5188 superalloy formed by laser melting deposition

高温合金 材料科学 微观结构 冶金 极限抗拉强度 合金 碳化物 沉积(地质) 复合材料 沉积物 生物 古生物学
作者
Chen Liu,Kuaikuai Guo,Yuluan Zhang,Shuo Shang,Changsheng Liu
标识
DOI:10.1117/12.2599108
摘要

Cobalt-based superalloys have been widely used in manufacturing high-temperature parts of gas turbine missiles, such as combustion chambers, exhaust nozzles, and heat exchangers in the nuclear energy industry. In order to meet the requirements for rapid manufacturing of these large-scale and high-performance components, the laser melting deposition (LMD) technology has attracted great attention in recent years. At present, the printability evaluation of Cobalt-based superalloys powder needs in-depth study. In this study, a cobalt-based superalloy (GH5188) has been additively manufacturing by using LMD for the first time. The self-designed gas atomization equipment is used to prepare GH5188 alloy powder, LMD technology is used to prepare as-deposited samples, the key process parameters and the resulted microstructure and mechanical properties are investigated. The results show that as the energy density increases, the pores and unfused defects of the as-deposited GH5188 sample decrease. The microstructure of the GH5188 sample is composed of columnar dendrites grown epitaxially, and carbides are precipitated in the grain boundaries and inside the crystals. As the energy density increases, the columnar crystals of the GH5188 sample are obviously thicker, and the hardness and elongation of the sample increase significantly. When the energy density is 70J/mm, the tensile strength of the sample can reach 806.3MPa; when the energy density is increased to 80J/m, the elongation of the sample is 33.01%

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿诺完成签到,获得积分10
刚刚
Sylvia完成签到,获得积分10
1秒前
共享精神应助承乐采纳,获得10
1秒前
1秒前
winwing发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
DrLee完成签到,获得积分10
2秒前
pengkt777完成签到,获得积分20
3秒前
邹秋雨完成签到,获得积分10
4秒前
sw完成签到,获得积分10
4秒前
5秒前
5秒前
朴素的晓灵完成签到,获得积分20
5秒前
欢喜方盒完成签到,获得积分10
6秒前
猪猪hero应助多多采纳,获得20
6秒前
科研通AI6应助辛辛采纳,获得10
6秒前
轻松发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
害羞便当完成签到 ,获得积分10
9秒前
bkagyin应助哈机密南北撸多采纳,获得10
9秒前
Wu完成签到,获得积分10
9秒前
Lexi完成签到,获得积分20
10秒前
10秒前
邱乐乐发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
Nes发布了新的文献求助10
11秒前
大模型应助winwing采纳,获得30
11秒前
12秒前
12秒前
秀丽的小懒虫完成签到,获得积分10
12秒前
清明居士发布了新的文献求助10
13秒前
嘻嘻哈哈发布了新的文献求助10
13秒前
14秒前
Fortune发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802