计算机科学
自动汇总
程序设计语言
源代码
代码段
抽象语法树
代码生成
Java
编码(集合论)
编码器
自然语言
自然语言处理
人工智能
解析
钥匙(锁)
操作系统
集合(抽象数据类型)
计算机安全
作者
Shreya R. Mehta,S. S. Patil,Nikita S. Shirguppi,Vahida Attar
标识
DOI:10.1109/icma52036.2021.9512639
摘要
Source Code Summarization implies generating summary in natural language from a given code snippet which can be helpful to developers for a platitude of reasons like Knowledge Training, to understand in brief about a newly imported project, to maintain precise summaries on the evolution of source code (using git history), etc. Instead of using state-of-art approaches like RNN and CNN, we propose an alternative approach that uses UAST (Universal Abstract Syntax Tree) of the source code to generate tokens and then use the Transformer model with self-attention mechanism that uses encoder-decoder, which unlike RNN method is helpful for capturing long-range dependencies. We have considered Java code snippets for generating the code summaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI