Supercapacitor Electrodes of Blended Carbon Nanotubes with Diverse Conductive Porous Structures Enabling High Charge/Discharge Rates

材料科学 超级电容器 碳纳米管 电极 电导率 多孔性 电容 化学工程 制作 电解质 纳米技术 复合材料 导电体 化学 医学 替代医学 物理化学 病理 工程类
作者
Taiyo Shimizu,Kazufumi Kobashi,H. Nakajima,Shun Muroga,Takeo Yamada,Toshiya Okazaki,Kenji Hata
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (9): 9712-9720 被引量:19
标识
DOI:10.1021/acsaem.1c01802
摘要

Electrically conductive porous structures are required to design high-performance supercapacitor electrodes; however, the sophisticated control has been challenging. We propose a facile fabrication method of blended carbon nanotube (CNT) electrodes with diverse conductive porous structures. By blending mildly dispersed aggregate structures of the single type of CNTs, we successfully obtained the CNT films composed of the mutually intertwining network structures, which modulated both meso- and macroporosity (the total pore volume, 1.10–3.81 cm3/g) and electrical conductivity (6–358 S/cm). The electrodes were characterized with an aqueous electrolyte under direct current (DC) and alternating current (AC) conditions, demonstrating the blended CNTs with several-fold higher power densities and smaller relaxation time constants than the singles, namely, higher charge/discharge rating operation. Among them, the pair of high-conductivity/low-pore volume CNTs and low-conductivity/high-pore volume CNTs led to the prominent advancement securing higher pore volumes which the single CNTs did not reach. These improvements stem from both conductivities and pore volumes in meso- and macropore regions, clarified by a heat mapping approach to visualize the relationship. These findings can guide us to structurize supercapacitor electrode materials and present the significance of conductivity and porous structures for high-rate operation capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助xiaobo采纳,获得100
刚刚
1秒前
852应助LZY319采纳,获得30
1秒前
hahehahahei完成签到,获得积分10
2秒前
烟花应助归仔采纳,获得10
2秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
萌萌许发布了新的文献求助10
4秒前
4秒前
么么怡完成签到,获得积分20
4秒前
hahehahahei发布了新的文献求助10
5秒前
5秒前
云来如梦完成签到 ,获得积分10
6秒前
demo完成签到,获得积分10
6秒前
科研通AI6应助熊研研采纳,获得30
6秒前
Janvenns完成签到,获得积分10
7秒前
G18960发布了新的文献求助20
8秒前
8秒前
9秒前
EricXu发布了新的文献求助10
9秒前
Hello应助yyy采纳,获得10
10秒前
zyl完成签到 ,获得积分10
10秒前
Davidjin发布了新的文献求助10
10秒前
S1mple发布了新的文献求助10
11秒前
纯真怜梦发布了新的文献求助10
13秒前
13秒前
大模型应助kingnb采纳,获得10
13秒前
xmcx25完成签到,获得积分10
14秒前
15秒前
orixero应助timeless采纳,获得10
16秒前
16秒前
17秒前
哈哈哈哈哈完成签到,获得积分10
18秒前
复杂沛白完成签到,获得积分10
18秒前
爆米花应助梅竹采纳,获得10
18秒前
诚心仰发布了新的文献求助10
19秒前
EricXu完成签到,获得积分20
19秒前
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488