Integration of scRNA-Seq and Bulk RNA-Seq to Analyse the Heterogeneity of Ovarian Cancer Immune Cells and Establish a Molecular Risk Model

小桶 生物 计算生物学 免疫系统 基因 髓样 转录组 T细胞 基因表达 癌症研究 遗传学
作者
Leilei Liang,Jing Yu,Li J,Ning Li,Jing Liu,Lin Xiu,Jia Zeng,Tiantian Wang,Lingying Wu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:86
标识
DOI:10.3389/fonc.2021.711020
摘要

Considerable evidence suggests that the heterogeneity of ovarian cancer (OC) is a major cause of treatment failure. Single-cell RNA sequencing (scRNA-seq) is a powerful tool to analyse the heterogeneity of the tumour at the single-cell level, leading to a better understanding of cell function at the genetic and cellular levels.OC scRNA-seq data were extracted from the Gene Expression Omnibus (GEO) database and the FindCluster () package used for cell cluster analysis. The GSVA package was used for single-sample gene set enrichment analysis (ssGSEA) analysis to obtain a Hallmark gene set score and bulk RNA-seq data were used to analyse the key genes of OC-associated immune cell subsets. CIBERSORT was used to identify immune scores of cells and the "WGCNA" package for the weighted correlation network analysis (WGCNA). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses of subtype groups were performed by GSEA. Then, univariate Cox and lasso regression were performed to further establish a signature. Finally, qPCR and immunohistochemistry staining were used to evaluate the expression of signature genes in OC.Two scRNA-seq (GSE154600 and GES158937) datasets were integrated to obtain 20 cell clusters. T cells or NK cells (cluster 5, 6, 7, 11), B cells (cluster 16, 19, 20) and myeloid cells (cluster 4, 9, 10) were clustered according to immune cell markers. The ssGSEA revealed that M1- and M2-like myeloid cell-related genes were significantly upregulated in P3 and P4 patients in the GSE154600 data. Immune cell analysis in TCGA-OC showed that a high abundance of M1-like tumour-associated macrophages (TAMS) predicts better survival. WGCNA, univariate Cox and lasso Cox regression established a two-gene signature (RiskScore=-0.059*CXCL13-0.034*IL26). Next, the TCGA-test and TCGA-OC were used to test the risk prediction ability of the signature, showing a good effect in the datasets. Moreover, the qPCR and immunohistochemistry staining revealed that the expression of CXCL13 and IL26 was reduced in OC tissues.A two-gene signature prognostic stratification system (CXCL13 and IL26) was developed based on the heterogeneity of OC immune cells to accurately evaluate the prognostic risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助小付采纳,获得10
2秒前
kawa发布了新的文献求助10
3秒前
3秒前
Augustines发布了新的文献求助10
4秒前
7秒前
gfdfg完成签到,获得积分10
7秒前
kawa完成签到,获得积分10
8秒前
10秒前
泉眼发布了新的文献求助10
11秒前
acheeee发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
JJy发布了新的文献求助10
13秒前
ERIC完成签到,获得积分20
14秒前
sober发布了新的文献求助10
14秒前
Augustines完成签到,获得积分10
14秒前
14秒前
Clown完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
宫阙发布了新的文献求助10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
xg完成签到,获得积分20
16秒前
田様应助科研通管家采纳,获得30
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482558
求助须知:如何正确求助?哪些是违规求助? 3072126
关于积分的说明 9125865
捐赠科研通 2763959
什么是DOI,文献DOI怎么找? 1516742
邀请新用户注册赠送积分活动 701767
科研通“疑难数据库(出版商)”最低求助积分说明 700608