亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Physics-Informed Deep Learning Paradigm for Traffic State and Fundamental Diagram Estimation

关系(数据库) 图表 组分(热力学) 国家(计算机科学) 流量(计算机网络) 人工智能 鉴定(生物学) 流量(数学) 计算机科学 深度学习 算法 物理 数据挖掘 机械 植物 数据库 生物 热力学 计算机安全
作者
Rongye Shi,Zhaobin Mo,Kuang Huang,Xuan Di,Qiang Du
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 11688-11698 被引量:21
标识
DOI:10.1109/tits.2021.3106259
摘要

Traffic state estimation (TSE) bifurcates into two categories, model-driven and data-driven (e.g., machine learning, ML), while each suffers from either deficient physics or small data. To mitigate these limitations, recent studies introduced a hybrid paradigm, physics-informed deep learning (PIDL), which contains both model-driven and data-driven components. This paper contributes an improved version, called physics-informed deep learning with a fundamental diagram learner (PIDL+FDL), which integrates ML terms into the model-driven component to learn a functional form of a fundamental diagram (FD), i.e., a mapping from traffic density to flow or velocity. The proposed PIDL+FDL has the advantages of performing the TSE learning, model parameter identification, and FD estimation simultaneously. We demonstrate the use of PIDL+FDL to solve popular first-order and second-order traffic flow models and reconstruct the FD relation as well as model parameters that are outside the FD terms. We then evaluate the PIDL+FDL-based TSE using the Next Generation SIMulation (NGSIM) dataset. The experimental results show the superiority of the PIDL+FDL in terms of improved estimation accuracy and data efficiency over advanced baseline TSE methods, and additionally, the capacity to properly learn the unknown underlying FD relation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
42秒前
科研通AI6应助fighting采纳,获得10
44秒前
Eileen完成签到 ,获得积分10
50秒前
1分钟前
1分钟前
baba小天后发布了新的文献求助10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
田様应助baba小天后采纳,获得10
1分钟前
fighting发布了新的文献求助10
1分钟前
1分钟前
乾坤侠客LW完成签到,获得积分10
1分钟前
yxuan发布了新的文献求助10
1分钟前
思源应助yxuan采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Dasein完成签到 ,获得积分10
2分钟前
nbtzy完成签到,获得积分10
2分钟前
科研通AI5应助fighting采纳,获得10
2分钟前
3分钟前
fighting发布了新的文献求助10
3分钟前
fighting完成签到,获得积分10
3分钟前
852应助yangjian采纳,获得30
3分钟前
orixero应助安静的睿渊采纳,获得10
3分钟前
舒心无剑完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得30
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
kuoping完成签到,获得积分0
5分钟前
甜蜜外套完成签到 ,获得积分10
6分钟前
fufufu123完成签到 ,获得积分10
6分钟前
lzy完成签到,获得积分10
8分钟前
9分钟前
星辰大海应助安静的睿渊采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111129
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712