Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones

保水性 扫描电子显微镜 粒径 化学 园艺 吸附 微观结构 植物 材料科学 土壤水分 生物 土壤科学 环境科学 复合材料 结晶学 物理化学 有机化学
作者
Jie Yu,Li-Ren Xu,Chong Liu,Yong-Tan Li,Xin-Bo Pang,Zhaohua Liu,Minsheng Yang,Yanhui Li
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (9): e0254627-e0254627 被引量:6
标识
DOI:10.1371/journal.pone.0254627
摘要

We used fresh leaves of Sophora japonica L. variety ‘Qingyun 1’ (A0) and 10 superior clones of the same species (A1–A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM 2.5 , A9 had the strongest retention capacity for PM 2.5–10 , A0 had the strongest retention capacity for PM >10 , and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助莱茵沃采纳,获得10
1秒前
领导范儿应助莱茵沃采纳,获得10
1秒前
细心笑卉完成签到 ,获得积分10
2秒前
2秒前
天天快乐应助jj采纳,获得10
3秒前
刘陶发布了新的文献求助10
3秒前
4秒前
5秒前
yyc2023完成签到,获得积分10
5秒前
5秒前
jkdajsk发布了新的文献求助10
6秒前
小花发布了新的文献求助10
6秒前
酒吧舞男茜茜妈完成签到 ,获得积分10
8秒前
天天完成签到 ,获得积分10
8秒前
clean完成签到,获得积分10
10秒前
爆米花应助副总采纳,获得10
10秒前
自然1111发布了新的文献求助10
10秒前
猹辣吐司特辣完成签到 ,获得积分10
11秒前
messi发布了新的文献求助10
12秒前
万能图书馆应助刘陶采纳,获得10
12秒前
Leo完成签到,获得积分10
13秒前
SMLW完成签到 ,获得积分10
15秒前
16秒前
17秒前
18秒前
爆米花应助土豆晴采纳,获得10
19秒前
21秒前
冷静孤容发布了新的文献求助10
21秒前
22秒前
clean发布了新的文献求助10
22秒前
24秒前
慕青应助自然1111采纳,获得30
24秒前
wanci应助么么哒大王采纳,获得10
26秒前
27秒前
organicboy发布了新的文献求助10
27秒前
绫苓完成签到,获得积分10
27秒前
爆米花应助熊二采纳,获得10
27秒前
酒仙发布了新的文献求助10
28秒前
科研通AI5应助mario采纳,获得10
28秒前
852应助TOMORI酱采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978