Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal

吸附 吸附 磷酸盐 化学工程 金属有机骨架 材料科学 扩散 密度泛函理论 多孔性 分子 无机化学 化学 有机化学 复合材料 计算化学 热力学 物理 工程类
作者
Mohua Li,Yanbiao Liu,Fang Li,Chensi Shen,Yusuf Valentino Kaneti,Yusuke Yamauchi,Brian Yuliarto,Bo Chen,Chong‐Chen Wang
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:178
标识
DOI:10.1021/acs.est.1c01723
摘要

The introduction of defects into hierarchical porous metal–organic frameworks (HP-MOFs) is of vital significance to boost their adsorption performance. Herein, an advanced template-assisted strategy has been developed to fine-tune the phosphate adsorption performance of HP-MOFs by dictating the type and number of defects in HP-UiO-66(Zr). To achieve this, monocarboxylic acids of varying chain lengths have been employed as template molecules to fabricate an array of defect-rich HP-UiO-66(Zr) derivatives following removal of the template. The as-prepared HP-UiO-66(Zr) exhibits a higher sorption capacity and faster sorption rate compared to the pristine UiO-66(Zr). Particularly, the octanoic acid-modulated UiO-66(Zr) exhibits a high adsorption capacity of 186.6 mg P/g and an intraparticle diffusion rate of 6.19 mg/g·min0.5, which are 4.8 times and 1.9 times higher than those of pristine UiO-66(Zr), respectively. The results reveal that defect sites play a critical role in boosting the phosphate uptake performance, which is further confirmed by various advanced characterizations. Density functional theory (DFT) calculations reveal the important role of defects in not only providing additional sorption sites but also reducing the sorption energy between HP-UiO-66(Zr) and phosphate. In addition, the hierarchical pores in HP-UiO-66(Zr) can accelerate the phosphate diffusion toward the active sorption sites. This work presents a promising route to tailor the adsorption performance of MOF-based adsorbents via defect engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君君完成签到,获得积分10
刚刚
cchen0902完成签到,获得积分10
刚刚
Sara发布了新的文献求助10
刚刚
刚刚
干饭闪电狼完成签到,获得积分10
1秒前
YUZU完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
pcx完成签到,获得积分10
3秒前
phd完成签到,获得积分10
4秒前
4秒前
曹志毅完成签到,获得积分10
4秒前
mito发布了新的文献求助10
5秒前
无悔呀发布了新的文献求助10
5秒前
6秒前
君君发布了新的文献求助10
6秒前
Yang完成签到,获得积分10
7秒前
风雨完成签到,获得积分10
7秒前
7秒前
8秒前
彭于晏应助小西采纳,获得30
8秒前
可爱的函函应助布布采纳,获得10
9秒前
10秒前
轩辕德地发布了新的文献求助10
10秒前
nine发布了新的文献求助30
10秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
11秒前
JamesPei应助小敦采纳,获得10
11秒前
今非发布了新的文献求助10
11秒前
李健的小迷弟应助通~采纳,获得30
11秒前
11秒前
11秒前
fanfan44390发布了新的文献求助10
11秒前
Zhang完成签到,获得积分10
12秒前
小二郎应助小田采纳,获得10
13秒前
13秒前
隐形曼青应助liike采纳,获得10
13秒前
phd发布了新的文献求助10
13秒前
13秒前
dingdong发布了新的文献求助30
13秒前
Orange应助清秀的语山采纳,获得50
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794