[Click preparation and application of chiral stationary phase based on intrinsic recognition ability of cyclodextrin].

化学 环糊精 手性固定相 固定相 相(物质) 高效液相色谱法 有机化学 色谱法
作者
Ming Chen,Xiaoning Jin,Xiaofei Ma,Yong Wang
出处
期刊:Chinese Journal of Chromatography 卷期号:38 (11): 1270-1280 被引量:5
标识
DOI:10.3724/sp.j.1123.2020.02011
摘要

Most of the studies on cyclodextrin (CD)-based chiral stationary phase (CSP) have focused on the functional derivatization of CD or the bridging arms to introduce more interaction sites and thus improve the chiral resolution ability. At present, there are only a few reports on CSP that can reflect the intrinsic recognition ability of natural CD. In this study, a mono(6-mercapto-6-deoxy)-β-CD CSP (CSP1) with a clear and controllable structure was synthesized by the "thiol-ene" click reaction. CSP1 retained the intrinsic structure of natural CD to the maximum extent, and the bridge arm had no recognition site. The results of 13C solid-state nuclear magnetic resonance (SSNMR) and Fourier transform infrared (FTIR) analyses confirmed the successful preparation of CSP1. Elemental analysis results showed that compared with double-bond functionalized silica, the percentages of C, H, and N in CSP1 increased, and the calculated CD loading of CSP1 was 0.82 μmol/m2. Reversed-phase high performance liquid chromatography was performed for the chiral resolution of more than 50 chiral enantiomers, including isoxazoline, chiral lactide, chiral ketone, flavone, and dansyl amino acid. This fully demonstrated the intrinsic chiral recognition ability of natural CD, and the results showed that the intrinsic recognition ability of cyclodextrin was more conducive to the separation of Ph-Ph samples containing two hydrophobic benzene ring groups in the isoxazoline samples. For the Ph-Py and Ph-OPr samples, the separation effect was not satisfactory. The separation results for the Ph-Py samples were not ideal because the outer hydroxyl group of cyclodextrin could form a hydrogen bond with the pyridine nitrogen, thus hindering the inclusion and the separation effect. This eventually led to poor separation of the enantiomers. While the pyrrolidone group in the Ph-OPr sample could also form a good inclusion complex with cyclodextrin, its higher polarity weakened the inclusion effect compared to that for benzene rings, thus leading to poor chirality separation results. For chiral lactides, the intrinsic recognition ability of CD was good only for the separation of some samples. In the separation of chiral ketones, large steric hindrance effect inhibited the intrinsic recognition ability of CD, and the separation effect of such samples on CSP1 was not ideal. External functional groups were required in some cases to further regulate the chiral recognition performance. The molecular structure of dansyl amino acids played an important role in the separation effect, in addition to the intrinsic recognition ability of CD. The number of side chains in the substituent also affected the quality of separation. Lengthening the side chain or increasing the hydrophobicity could effectively improve the separation efficiency. The separation effect of flavanone samples on CSP1 was ordinary. The substituent positions also affected the separation effect. In order to further explore the intrinsic recognition ability of CD, the functional triazole-bridged CD-CSP (CSP2) and imidazole-bridged CD-CSP (CSP3) (the surface CD loadings of CSP2 and CSP3 were 0.51 μmol/m2 and 0.46 μmol/m2, respectively) prepared earlier were selected and compared under the same chromatographic conditions. The results showed that the separation of the sample was related not only to the structure of the chiral medium but also to the structure of the sample molecules. Functional modification of the bridge arm could improve the selectivity of some enantiomers, but would also cause partial loss of the intrinsic chiral recognition ability of CD. For samples with the intrinsic recognition ability of CD to facilitate separation, no functional group had to be added to the bridge arm when designing a chiral medium. This study provides a useful reference for the design of CD-based CSPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
TaiLongYang完成签到,获得积分20
刚刚
赘婿应助飞云之下采纳,获得10
刚刚
1秒前
和谐飞飞完成签到,获得积分10
2秒前
mmy完成签到,获得积分10
2秒前
2秒前
yangxt-iga发布了新的文献求助10
2秒前
体贴琳完成签到 ,获得积分10
2秒前
小于子88完成签到,获得积分10
2秒前
斯文败类应助vv1223采纳,获得20
3秒前
SciGPT应助不舍天真采纳,获得10
3秒前
3秒前
4秒前
LZCCC完成签到,获得积分10
4秒前
fvsuar完成签到,获得积分10
4秒前
大聪明发布了新的文献求助10
4秒前
Eins完成签到 ,获得积分10
4秒前
丢丢在吗发布了新的文献求助10
4秒前
佳佳发布了新的文献求助10
4秒前
su发布了新的文献求助10
4秒前
见雨鱼完成签到 ,获得积分10
4秒前
4秒前
狗熊发布了新的文献求助10
5秒前
5秒前
打打应助追寻的问玉采纳,获得10
5秒前
a'mao'men完成签到,获得积分10
5秒前
嘟嘟发布了新的文献求助10
5秒前
思源应助PaoPao采纳,获得10
5秒前
王旭发布了新的文献求助10
6秒前
小迷糊完成签到 ,获得积分10
6秒前
6秒前
Simone发布了新的文献求助10
6秒前
昌怜烟完成签到,获得积分10
7秒前
7秒前
呢n完成签到 ,获得积分10
7秒前
8秒前
miawei完成签到,获得积分10
8秒前
生活散文发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977