极限抗拉强度
拉伸试验
数字图像相关
非线性系统
生物医学工程
材料科学
奥格登
垂直的
表征(材料科学)
单轴张力
计算机科学
复合材料
纳米技术
数学
物理
工程类
几何学
量子力学
作者
Bin Zhang,Shawn A. Chester,Siva Nadimpalli,Justin T. Suriano,David P. Theis,Samuel C. Lieber
出处
期刊:Journal of engineering and science in medical diagnostics and therapy
[ASME International]
日期:2021-07-19
卷期号:4 (4)
被引量:2
摘要
Abstract Porcine skin has been used as a starting material in several released mesh medical devices. Although this controlled animal derived material is prevalent in tissue engineered medical devices, little is known about its mechanical properties. This study mechanically characterized porcine skin starting material (PSSM), provided by Midwest Research Swine. Uniaxial tensile tests were performed on samples cut from different regions (back and neck) and orientations (parallel and perpendicular to the spine) on the PSSM. The stress–stretch relationship was determined for each sample utilizing a load frame equipped with a Digital Image Correlation measurement system. The PSSM skin demonstrates the classic nonlinear and linear regions seen in other biologic tissues. A bilinear curve fit method was used to separate the nonlinear and linear regions of the tensile curve, and each region was analyzed with an Ogden and linear model, respectively. The results show that the tensile curve is better described with this method as opposed to analyzing the full curve with one model. A comparison was made between samples cut from the different regions and orientations. There were significant differences between the failure measures and mechanical indices from the two regions, and on average the back behaved anisotropically and the neck isotropically. The PSSM mechanical properties from this study could serve as a preliminary guide for those exploring devices or processes in the tissue engineering field. The methods demonstrated in this study could also help characterize other biologic materials, and be used toward the development of tissue specific industrial standards.
科研通智能强力驱动
Strongly Powered by AbleSci AI