A 1-km hourly air-temperature model for 13 northeastern U.S. states using remotely sensed and ground-based measurements

数据同化 环境科学 气象学 均方误差 插值(计算机图形学) 比例(比率) 卫星 遥感 地理 计算机科学 统计 数学 地图学 物理 计算机图形学(图像) 动画 天文
作者
Daniel Carrión,Kodi B. Arfer,Johnathan Rush,Michael Dorman,Sebastian T. Rowland,Marianthi‐Anna Kioumourtzoglou,Itai Kloog,Allan C. Just
出处
期刊:Environmental Research [Elsevier]
卷期号:200: 111477-111477 被引量:27
标识
DOI:10.1016/j.envres.2021.111477
摘要

Accurate and precise estimates of ambient air temperatures that can capture fine-scale within-day variability are necessary for studies of air temperature and health.We developed statistical models to predict temperature at each hour in each cell of a 927-m square grid across the Northeast and Mid-Atlantic United States from 2003 to 2019, across ~4000 meteorological stations from the Integrated Mesonet, using inputs such as elevation, an inverse-distance-weighted interpolation of temperature, and satellite-based vegetation and land surface temperature. We used a rigorous spatial cross-validation scheme and spatially weighted the errors to estimate how well model predictions would generalize to new cell-days. We assess the within-county association of temperature and social vulnerability in a heat wave as an example application.We found that a model based on the XGBoost machine-learning algorithm was fast and accurate, obtaining weighted root mean square errors (RMSEs) around 1.6 K, compared to standard deviations around 11.0 K. We found similar accuracy when validating our model on an external dataset from Weather Underground. Assessing predictions from the North American Land Data Assimilation System-2 (NLDAS-2), another hourly model, in the same way, we found it was much less accurate, with RMSEs around 2.5 K. This is likely due to the NLDAS-2 model's coarser spatial resolution, and the dynamic variability of temperature within its grid cells. Finally, we demonstrated the health relevance of our model by showing that our temperature estimates were associated with social vulnerability across the region during a heat wave, whereas the NLDAS-2 showed a much weaker association.Our high spatiotemporal resolution air temperature model provides a strong contribution for future health studies in this region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhhhmmmm发布了新的文献求助10
1秒前
2秒前
彭静琳给彭静琳的求助进行了留言
3秒前
fenfen发布了新的文献求助10
4秒前
JamesPei应助吃饭了吗123采纳,获得10
4秒前
爆米花应助hahhha采纳,获得10
5秒前
5秒前
110o发布了新的文献求助10
7秒前
泊頔发布了新的文献求助10
9秒前
寒江雪发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Thien发布了新的文献求助10
10秒前
gary应助felix采纳,获得10
12秒前
pluto应助felix采纳,获得10
12秒前
12秒前
泪七龙完成签到,获得积分10
12秒前
可爱的函函应助CoCo采纳,获得10
13秒前
郭依婷发布了新的文献求助10
13秒前
13秒前
14秒前
munawar发布了新的文献求助10
17秒前
sian发布了新的文献求助10
17秒前
泪七龙发布了新的文献求助10
18秒前
科研通AI6应助ruby采纳,获得10
18秒前
18秒前
mo完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
憨憨发布了新的文献求助10
21秒前
科研通AI6应助寒江雪采纳,获得10
22秒前
zzmyyds完成签到,获得积分10
22秒前
Ava应助阿南采纳,获得10
23秒前
贾明阳完成签到,获得积分10
23秒前
23秒前
mo发布了新的文献求助10
23秒前
Chelsea发布了新的文献求助30
24秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402