A 1-km hourly air-temperature model for 13 northeastern U.S. states using remotely sensed and ground-based measurements

数据同化 环境科学 气象学 均方误差 插值(计算机图形学) 比例(比率) 卫星 遥感 地理 计算机科学 统计 数学 地图学 物理 动画 计算机图形学(图像) 天文
作者
Daniel Carrión,Kodi B. Arfer,Johnathan Rush,Michael Dorman,Sebastian T. Rowland,Marianthi‐Anna Kioumourtzoglou,Itai Kloog,Allan C. Just
出处
期刊:Environmental Research [Elsevier]
卷期号:200: 111477-111477 被引量:27
标识
DOI:10.1016/j.envres.2021.111477
摘要

Accurate and precise estimates of ambient air temperatures that can capture fine-scale within-day variability are necessary for studies of air temperature and health.We developed statistical models to predict temperature at each hour in each cell of a 927-m square grid across the Northeast and Mid-Atlantic United States from 2003 to 2019, across ~4000 meteorological stations from the Integrated Mesonet, using inputs such as elevation, an inverse-distance-weighted interpolation of temperature, and satellite-based vegetation and land surface temperature. We used a rigorous spatial cross-validation scheme and spatially weighted the errors to estimate how well model predictions would generalize to new cell-days. We assess the within-county association of temperature and social vulnerability in a heat wave as an example application.We found that a model based on the XGBoost machine-learning algorithm was fast and accurate, obtaining weighted root mean square errors (RMSEs) around 1.6 K, compared to standard deviations around 11.0 K. We found similar accuracy when validating our model on an external dataset from Weather Underground. Assessing predictions from the North American Land Data Assimilation System-2 (NLDAS-2), another hourly model, in the same way, we found it was much less accurate, with RMSEs around 2.5 K. This is likely due to the NLDAS-2 model's coarser spatial resolution, and the dynamic variability of temperature within its grid cells. Finally, we demonstrated the health relevance of our model by showing that our temperature estimates were associated with social vulnerability across the region during a heat wave, whereas the NLDAS-2 showed a much weaker association.Our high spatiotemporal resolution air temperature model provides a strong contribution for future health studies in this region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
susan完成签到,获得积分10
2秒前
chbbit完成签到,获得积分10
3秒前
3秒前
Jas完成签到,获得积分20
3秒前
傲娇的棉花糖完成签到,获得积分10
5秒前
5秒前
cc完成签到,获得积分10
6秒前
today完成签到 ,获得积分10
8秒前
9秒前
LJ发布了新的文献求助10
11秒前
认真台灯完成签到 ,获得积分10
13秒前
14秒前
大个应助优秀的凉面采纳,获得10
15秒前
啥也不会完成签到,获得积分10
16秒前
龙慧琳完成签到,获得积分10
19秒前
22秒前
24秒前
孙文霞发布了新的文献求助10
25秒前
烦恼大海完成签到 ,获得积分10
26秒前
赵梦杰完成签到,获得积分10
27秒前
adam完成签到,获得积分10
27秒前
科目三应助可乐冰淇淋采纳,获得10
28秒前
mayi完成签到,获得积分10
28秒前
完美世界应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
rui应助科研通管家采纳,获得10
29秒前
hey应助科研通管家采纳,获得20
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
可爱草丛应助科研通管家采纳,获得10
29秒前
小鱼完成签到 ,获得积分10
29秒前
彭于晏应助zasideler采纳,获得10
30秒前
蛋挞完成签到 ,获得积分10
31秒前
32秒前
33秒前
学术乌龟完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600781
求助须知:如何正确求助?哪些是违规求助? 4686312
关于积分的说明 14843144
捐赠科研通 4677855
什么是DOI,文献DOI怎么找? 2538929
邀请新用户注册赠送积分活动 1505884
关于科研通互助平台的介绍 1471241