A 1-km hourly air-temperature model for 13 northeastern U.S. states using remotely sensed and ground-based measurements

数据同化 环境科学 气象学 均方误差 插值(计算机图形学) 比例(比率) 卫星 遥感 地理 计算机科学 统计 数学 地图学 物理 动画 计算机图形学(图像) 天文
作者
Daniel Carrión,Kodi B. Arfer,Johnathan Rush,Michael Dorman,Sebastian T. Rowland,Marianthi‐Anna Kioumourtzoglou,Itai Kloog,Allan C. Just
出处
期刊:Environmental Research [Elsevier BV]
卷期号:200: 111477-111477 被引量:27
标识
DOI:10.1016/j.envres.2021.111477
摘要

Accurate and precise estimates of ambient air temperatures that can capture fine-scale within-day variability are necessary for studies of air temperature and health.We developed statistical models to predict temperature at each hour in each cell of a 927-m square grid across the Northeast and Mid-Atlantic United States from 2003 to 2019, across ~4000 meteorological stations from the Integrated Mesonet, using inputs such as elevation, an inverse-distance-weighted interpolation of temperature, and satellite-based vegetation and land surface temperature. We used a rigorous spatial cross-validation scheme and spatially weighted the errors to estimate how well model predictions would generalize to new cell-days. We assess the within-county association of temperature and social vulnerability in a heat wave as an example application.We found that a model based on the XGBoost machine-learning algorithm was fast and accurate, obtaining weighted root mean square errors (RMSEs) around 1.6 K, compared to standard deviations around 11.0 K. We found similar accuracy when validating our model on an external dataset from Weather Underground. Assessing predictions from the North American Land Data Assimilation System-2 (NLDAS-2), another hourly model, in the same way, we found it was much less accurate, with RMSEs around 2.5 K. This is likely due to the NLDAS-2 model's coarser spatial resolution, and the dynamic variability of temperature within its grid cells. Finally, we demonstrated the health relevance of our model by showing that our temperature estimates were associated with social vulnerability across the region during a heat wave, whereas the NLDAS-2 showed a much weaker association.Our high spatiotemporal resolution air temperature model provides a strong contribution for future health studies in this region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
马柒柒完成签到,获得积分20
2秒前
2秒前
cici发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
uil发布了新的文献求助10
3秒前
充电宝应助YZMING采纳,获得10
5秒前
6秒前
6秒前
一颗煤炭完成签到 ,获得积分10
6秒前
gry发布了新的文献求助10
7秒前
sujinyu完成签到,获得积分10
7秒前
小蘑菇应助显隐采纳,获得10
7秒前
8秒前
ding应助ght采纳,获得60
10秒前
研友_VZG7GZ应助医学生采纳,获得10
10秒前
看书书发布了新的文献求助10
11秒前
13秒前
13秒前
zzzzzz发布了新的文献求助10
13秒前
哇哇卡哇发布了新的文献求助30
13秒前
13秒前
yizhiyetu完成签到,获得积分10
14秒前
简化为发布了新的文献求助10
14秒前
14秒前
14秒前
GAN完成签到,获得积分10
15秒前
caizhonglun完成签到,获得积分10
15秒前
17秒前
18秒前
Aoren发布了新的文献求助10
19秒前
Luo发布了新的文献求助10
20秒前
orixero应助cici采纳,获得10
21秒前
医学生发布了新的文献求助10
21秒前
852应助狂野香氛采纳,获得10
22秒前
23秒前
苏三三完成签到,获得积分10
24秒前
随遇而安完成签到,获得积分10
24秒前
医学生完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049233
求助须知:如何正确求助?哪些是违规求助? 4277322
关于积分的说明 13333357
捐赠科研通 4091953
什么是DOI,文献DOI怎么找? 2239389
邀请新用户注册赠送积分活动 1246254
关于科研通互助平台的介绍 1174828