Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助应助余小吉采纳,获得10
刚刚
科研牛人发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助30
1秒前
wwy完成签到,获得积分10
1秒前
左丘以云完成签到,获得积分10
1秒前
729完成签到,获得积分10
1秒前
2秒前
Lucas应助FZz采纳,获得10
2秒前
小徐爱絮叨完成签到,获得积分10
2秒前
YIN完成签到 ,获得积分10
2秒前
qcl完成签到,获得积分10
3秒前
3秒前
田様应助追寻的书竹采纳,获得10
3秒前
fuuu完成签到,获得积分10
4秒前
4秒前
李姣完成签到,获得积分10
4秒前
莹崽无敌完成签到,获得积分10
4秒前
我独自升级完成签到,获得积分10
4秒前
4秒前
Guo完成签到,获得积分10
5秒前
丘比特应助Trever采纳,获得10
5秒前
Hello应助追寻的书竹采纳,获得10
5秒前
CodeCraft应助微笑无敌瑶采纳,获得10
6秒前
情怀应助杨洋采纳,获得10
6秒前
6秒前
所所应助wang采纳,获得10
6秒前
6秒前
7秒前
7秒前
chen发布了新的文献求助10
7秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
东方三问应助科研通管家采纳,获得10
8秒前
lky应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894