Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研王采纳,获得10
1秒前
典雅怀曼完成签到,获得积分10
1秒前
排骨炖汤完成签到,获得积分10
1秒前
包凡之完成签到,获得积分10
2秒前
于丽萍发布了新的文献求助10
2秒前
绝世黄瓜完成签到,获得积分10
2秒前
山鲁佐德完成签到,获得积分10
2秒前
momo完成签到 ,获得积分10
2秒前
计划明天炸地球完成签到,获得积分10
2秒前
祭礼之龙完成签到,获得积分10
2秒前
芒果完成签到,获得积分10
2秒前
杯中冰糖茶完成签到,获得积分10
2秒前
Jane完成签到,获得积分10
2秒前
欧阳完成签到,获得积分10
3秒前
聪慧若风完成签到,获得积分10
3秒前
dting完成签到,获得积分10
3秒前
3秒前
LHW完成签到,获得积分10
3秒前
久远寺有珠完成签到,获得积分10
3秒前
jluzz完成签到,获得积分10
3秒前
Strongly完成签到,获得积分10
3秒前
小明完成签到,获得积分10
3秒前
HH完成签到,获得积分10
3秒前
笨笨的鬼神完成签到,获得积分10
3秒前
喵喵喵发布了新的文献求助30
4秒前
浮游应助Louise采纳,获得10
4秒前
科研女郎完成签到 ,获得积分10
4秒前
wwc发布了新的文献求助10
5秒前
Fan完成签到 ,获得积分10
5秒前
7秒前
8秒前
潇潇完成签到 ,获得积分0
8秒前
HXX19完成签到 ,获得积分10
9秒前
cc完成签到 ,获得积分10
9秒前
兰666驳回了李健应助
9秒前
隔壁巷子里的劉完成签到 ,获得积分10
9秒前
10秒前
心意完成签到 ,获得积分20
11秒前
Rhino发布了新的文献求助10
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598448
求助须知:如何正确求助?哪些是违规求助? 4009551
关于积分的说明 12411589
捐赠科研通 3688931
什么是DOI,文献DOI怎么找? 2033578
邀请新用户注册赠送积分活动 1066779
科研通“疑难数据库(出版商)”最低求助积分说明 951864