Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助陈cxz采纳,获得30
1秒前
1秒前
1秒前
嘎嘣脆发布了新的文献求助10
1秒前
wy完成签到,获得积分10
2秒前
斯文败类应助kingripple采纳,获得10
2秒前
大模型应助ycy采纳,获得10
2秒前
2秒前
田様应助April采纳,获得10
2秒前
2秒前
方远锋完成签到,获得积分10
3秒前
3秒前
Zhengkeke发布了新的文献求助30
4秒前
ZaZa发布了新的文献求助50
4秒前
4秒前
隐形白亦发布了新的文献求助10
5秒前
章鱼哥发布了新的文献求助10
5秒前
Akim应助gjh采纳,获得10
6秒前
等待凡灵关注了科研通微信公众号
6秒前
6秒前
慕青应助典雅的静采纳,获得10
6秒前
kid1412完成签到,获得积分10
6秒前
6秒前
6秒前
zfffffff发布了新的文献求助10
8秒前
小瑞完成签到,获得积分10
8秒前
wanci应助李颜龙采纳,获得10
9秒前
9秒前
melon发布了新的文献求助10
9秒前
钻石发布了新的文献求助10
10秒前
11秒前
英吉利25发布了新的文献求助20
11秒前
Akim应助baibai采纳,获得10
11秒前
12秒前
思维隋发布了新的文献求助10
12秒前
Hello应助WL露儿采纳,获得10
12秒前
韩涵发布了新的文献求助10
12秒前
13秒前
SYLH应助会飞的鱼采纳,获得10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052