Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助孤独丹珍采纳,获得10
1秒前
BMII发布了新的文献求助10
2秒前
cshuang发布了新的文献求助30
2秒前
Lalala发布了新的文献求助10
3秒前
饱满破茧完成签到,获得积分10
4秒前
海晨发布了新的文献求助30
4秒前
4秒前
4秒前
王春起完成签到,获得积分10
8秒前
hhhm发布了新的文献求助10
8秒前
CodeCraft应助yoyo采纳,获得10
9秒前
情怀应助BMII采纳,获得10
9秒前
欧阳完成签到,获得积分10
11秒前
12秒前
快乐的冰巧关注了科研通微信公众号
13秒前
不配.应助竹子采纳,获得10
14秒前
欧阳发布了新的文献求助10
15秒前
16秒前
酷波er应助呜啦啦啦采纳,获得10
17秒前
薰硝壤应助hhhm采纳,获得10
18秒前
19秒前
19秒前
七七完成签到,获得积分10
19秒前
wwww完成签到 ,获得积分10
20秒前
yoyo发布了新的文献求助10
21秒前
Lalala完成签到,获得积分10
21秒前
22秒前
坦率完成签到 ,获得积分10
24秒前
Stata@R发布了新的文献求助10
24秒前
24秒前
28秒前
清秀的砖头完成签到,获得积分10
29秒前
fdf发布了新的文献求助10
29秒前
29秒前
心已死何来心完成签到,获得积分10
30秒前
LX发布了新的文献求助20
30秒前
午餐肉完成签到,获得积分10
31秒前
31秒前
Stata@R完成签到,获得积分10
32秒前
丘比特应助感性的靖仇采纳,获得10
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141332
求助须知:如何正确求助?哪些是违规求助? 2792381
关于积分的说明 7802238
捐赠科研通 2448574
什么是DOI,文献DOI怎么找? 1302618
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237