已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjzbw发布了新的文献求助10
刚刚
田凯旋发布了新的文献求助10
1秒前
Leslie发布了新的文献求助10
1秒前
打打应助不落后的黑夜采纳,获得10
2秒前
5秒前
GU发布了新的文献求助10
5秒前
10秒前
烊驼完成签到,获得积分10
14秒前
14秒前
dap发布了新的文献求助10
14秒前
半岛完成签到,获得积分10
15秒前
413115348完成签到,获得积分20
15秒前
16秒前
毛毛毛完成签到,获得积分10
17秒前
17秒前
vigour发布了新的文献求助10
17秒前
18秒前
怕黑向秋发布了新的文献求助10
18秒前
18秒前
19秒前
PSJ完成签到,获得积分10
20秒前
香蕉觅云应助vigour采纳,获得10
21秒前
21秒前
413115348关注了科研通微信公众号
23秒前
h2o发布了新的文献求助10
23秒前
25秒前
25秒前
小心翼翼完成签到 ,获得积分10
26秒前
26秒前
hhh发布了新的文献求助10
28秒前
zhegewa发布了新的文献求助10
29秒前
自信的从寒完成签到 ,获得积分10
29秒前
NexusExplorer应助呆呆兽采纳,获得10
31秒前
orixero应助无奈的盈采纳,获得10
33秒前
34秒前
科研通AI6.1应助wwuu采纳,获得10
39秒前
孔孔完成签到,获得积分10
40秒前
丘比特应助呆萌的鸿煊采纳,获得10
42秒前
上官若男应助危机的一斩采纳,获得10
45秒前
JM完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941