Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
包容凌翠发布了新的文献求助10
1秒前
1秒前
科研通AI6应助张杰采纳,获得10
1秒前
1秒前
Yukirin发布了新的文献求助10
1秒前
阿蓉啊完成签到 ,获得积分10
2秒前
2秒前
斜玉完成签到,获得积分10
2秒前
甜蜜听云完成签到 ,获得积分10
2秒前
2秒前
chen完成签到,获得积分10
3秒前
菠小萝完成签到,获得积分10
3秒前
liputao完成签到,获得积分10
3秒前
3秒前
mochaff完成签到,获得积分10
4秒前
赘婿应助GOODYUE采纳,获得10
4秒前
111发布了新的文献求助10
4秒前
lzh发布了新的文献求助10
5秒前
易烊干洗发布了新的文献求助20
5秒前
向野发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
8秒前
8秒前
浅浅完成签到,获得积分10
8秒前
8秒前
懒羊羊发布了新的文献求助10
9秒前
9秒前
云阿柔完成签到,获得积分10
9秒前
9秒前
能干冰露发布了新的文献求助10
10秒前
kaik031419发布了新的文献求助10
10秒前
浮游应助易烊干洗采纳,获得10
10秒前
dh完成签到,获得积分0
10秒前
叶子发布了新的文献求助10
11秒前
HCLO发布了新的文献求助10
11秒前
浅浅发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320015
求助须知:如何正确求助?哪些是违规求助? 4461987
关于积分的说明 13885224
捐赠科研通 4352699
什么是DOI,文献DOI怎么找? 2390804
邀请新用户注册赠送积分活动 1384435
关于科研通互助平台的介绍 1354258