Elite Archive-Assisted Adaptive Memetic Algorithm for a Realistic Hybrid Differentiation Flowshop Scheduling Problem

渡线 局部搜索(优化) 数学优化 作业车间调度 人口 差异进化 计算机科学 模因算法 元启发式 调度(生产过程) 局部最优 算法 数学 地铁列车时刻表 人工智能 操作系统 社会学 人口学
作者
Guanghui Zhang,Xuejiao Ma,Ling Wang,Keyi Xing
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 100-114 被引量:25
标识
DOI:10.1109/tevc.2021.3094542
摘要

This research presents an original and efficient elite archive-assisted adaptive memetic algorithm (EAMA) to deal with a realistic hybrid differentiation flowshop scheduling problem (HDFSP) with the objective of total completion time minimization. In this scheduling problem, each job consists of multiple parts and the jobs are divided into different types. The manufacturing of a job is comprised of three consecutive stages: 1) parts fabrication on first-stage parallel machines; 2) parts assembly on second-stage single machine; and 3) job differentiation on one of third-stage dedicated machines. We provide a mixed-integer programming model, derive three lower bounds, and further present the EAMA metaheuristic for HDFSP. The EAMA is initialized heuristically, and its global exploration is performed by a differential evolution, which includes three newly designed operators: 1) elite-driven discretized differential mutation; 2) probability crossover; and 3) biased selection. To enhance the local search, an external elite archive is set and evolved in parallel with global exploration by a meta-Lamarckian learning-based adaptive multistage local search and a variable length-based adaptive block-insertion local search. After the global exploration and local exploitation, an elite sharing strategy is used to exchange the excellent information between population and elite archive, and an adaptive restart strategy is used to diversify the population. The influence of parameter setting on EAMA is surveyed by using an improved design-of-experiment. The statistical results from extensive computational experiments demonstrate the effectiveness of the special designs and show that EAMA performs more efficient than the existing algorithms in solving the problem under consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑思雨完成签到,获得积分10
刚刚
小璐璐呀发布了新的文献求助10
1秒前
丘小七发布了新的文献求助10
2秒前
沉默的不言完成签到,获得积分10
3秒前
zjl900111发布了新的文献求助10
3秒前
tRNA完成签到 ,获得积分10
5秒前
坚强的访蕊完成签到,获得积分10
6秒前
kyo发布了新的文献求助10
6秒前
Orange应助ly采纳,获得30
7秒前
7秒前
7秒前
李健的粉丝团团长应助Fan采纳,获得10
7秒前
Owen应助文静的西牛采纳,获得10
8秒前
zjl900111完成签到,获得积分10
8秒前
9秒前
ding应助Han采纳,获得10
9秒前
zq吃芒果完成签到,获得积分10
11秒前
喵典娜发布了新的文献求助10
12秒前
12秒前
lh发布了新的文献求助10
13秒前
liu发布了新的文献求助10
15秒前
皮凡完成签到,获得积分10
17秒前
爆米花应助hh采纳,获得10
18秒前
20秒前
ZQP发布了新的文献求助10
20秒前
Fan完成签到,获得积分10
24秒前
JamesPei应助yz123采纳,获得10
25秒前
汉堡包应助limof采纳,获得10
26秒前
完美世界应助ZQP采纳,获得10
26秒前
26秒前
26秒前
顾矜应助梧桐采纳,获得10
26秒前
Lee发布了新的文献求助10
27秒前
27秒前
w1完成签到,获得积分10
28秒前
十四发布了新的文献求助10
30秒前
Fan发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902