Elite Archive-Assisted Adaptive Memetic Algorithm for a Realistic Hybrid Differentiation Flowshop Scheduling Problem

渡线 局部搜索(优化) 数学优化 作业车间调度 人口 差异进化 计算机科学 模因算法 元启发式 调度(生产过程) 局部最优 算法 数学 地铁列车时刻表 人工智能 操作系统 社会学 人口学
作者
Guanghui Zhang,Xuejiao Ma,Ling Wang,Keyi Xing
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 100-114 被引量:25
标识
DOI:10.1109/tevc.2021.3094542
摘要

This research presents an original and efficient elite archive-assisted adaptive memetic algorithm (EAMA) to deal with a realistic hybrid differentiation flowshop scheduling problem (HDFSP) with the objective of total completion time minimization. In this scheduling problem, each job consists of multiple parts and the jobs are divided into different types. The manufacturing of a job is comprised of three consecutive stages: 1) parts fabrication on first-stage parallel machines; 2) parts assembly on second-stage single machine; and 3) job differentiation on one of third-stage dedicated machines. We provide a mixed-integer programming model, derive three lower bounds, and further present the EAMA metaheuristic for HDFSP. The EAMA is initialized heuristically, and its global exploration is performed by a differential evolution, which includes three newly designed operators: 1) elite-driven discretized differential mutation; 2) probability crossover; and 3) biased selection. To enhance the local search, an external elite archive is set and evolved in parallel with global exploration by a meta-Lamarckian learning-based adaptive multistage local search and a variable length-based adaptive block-insertion local search. After the global exploration and local exploitation, an elite sharing strategy is used to exchange the excellent information between population and elite archive, and an adaptive restart strategy is used to diversify the population. The influence of parameter setting on EAMA is surveyed by using an improved design-of-experiment. The statistical results from extensive computational experiments demonstrate the effectiveness of the special designs and show that EAMA performs more efficient than the existing algorithms in solving the problem under consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观红牛完成签到 ,获得积分10
2秒前
孤独的蚂蚁完成签到 ,获得积分10
2秒前
斯文明杰发布了新的文献求助10
3秒前
3秒前
3秒前
小向完成签到,获得积分10
3秒前
Cyber_relic发布了新的文献求助10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助30
5秒前
jenna完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
pp1230完成签到,获得积分10
6秒前
迟大猫应助2248388622采纳,获得10
7秒前
8秒前
8秒前
情怀应助贝果小脑袋采纳,获得30
9秒前
9秒前
星辉斑斓完成签到,获得积分10
9秒前
陈同学发布了新的文献求助10
10秒前
小文完成签到 ,获得积分10
10秒前
10秒前
10秒前
科研小白完成签到,获得积分10
11秒前
闾丘曼安发布了新的文献求助10
11秒前
关山发布了新的文献求助10
11秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Nari完成签到,获得积分10
13秒前
cclin发布了新的文献求助10
13秒前
zsn完成签到 ,获得积分10
14秒前
Ao发布了新的文献求助10
15秒前
CodeCraft应助激昂的白山采纳,获得10
15秒前
科研通AI5应助傲娇泥猴桃采纳,获得10
15秒前
慕青应助mk采纳,获得10
16秒前
17秒前
小蘑菇应助爱吃小笼包采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771