强化学习
汽车工业
生产(经济)
任务(项目管理)
离散制造
计算机科学
生产计划
竞争优势
制造工程
工程类
系统工程
人工智能
业务
营销
宏观经济学
航空航天工程
经济
作者
Yong-Kuk Jeong,Tarun Kumar Agrawal,Erik Flores-García,Magnus Wiktorsson
出处
期刊:Procedia CIRP
[Elsevier]
日期:2021-01-01
卷期号:104: 1807-1812
被引量:7
标识
DOI:10.1016/j.procir.2021.11.305
摘要
The study analyzes the application of reinforcement learning (RL) for material handling tasks in Smart Production Logistics (SPL). It presents two contributions based on empirical results of a RL model in dynamic production logistics environment from the automotive industry. Firstly, an architecture integrating the use of RL in SPL. Secondly, the study defines various elements of RL (environment, value, state, reward, and policy) relevant for training and validating models in SPL. The study provides novel insight essential for manufacturing managers and extends current understanding related to research combining artificial intelligence and SPL, granting manufacturing companies a unique competitive advantage.
科研通智能强力驱动
Strongly Powered by AbleSci AI