Unsupervised CNN Based on Self-similarity for Seismic Data Denoising

计算机科学 降噪 噪音(视频) 模式识别(心理学) 人工智能 卷积神经网络 相似性(几何) 反褶积 人工神经网络 噪声测量 算法 图像(数学)
作者
Wenqian Fang,Claudia Paris,Li Hongwei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/lgrs.2021.3131046
摘要

Convolutional neural network (CNN)-based methods are powerful tools for seismic data denoising. Most methods adopt a supervised learning strategy, which requires noise-free labels to construct an objective function to guide the training of network parameters; however, it is impossible to obtain true noise-free field data. We propose a novel unsupervised random-noise-suppression method that can train a network directly on noisy target data without noise-free labels. The proposed method is inspired by the simple denoising idea of averaging multiple noisy observations, and it requires noise to satisfy two assumptions: it should be zero-mean and independent of the signal. In this method, multiple observations can be used as labels, and the loss function is constructed as the mean square error expected between the network output and these observations. The trained network estimates the expected value of these noise observations (i.e., the clean signal). This unsupervised method theoretically requires multiple noisy observations. Considering the good nonlocal self-similarity of seismic data, we used self-similar blocks to rearrange the data to construct multiple pseudo-observations and finally realize unsupervised training. The proposed method was compared with the traditional f-x deconvolution, curvelet, and generator CNN method on synthetic and field data, and the experimental results verified the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的延恶完成签到,获得积分20
刚刚
YB96发布了新的文献求助10
刚刚
2秒前
2秒前
充电宝应助温婉的夏烟采纳,获得200
2秒前
ruyunlong发布了新的文献求助10
2秒前
FashionBoy应助nn采纳,获得10
4秒前
在下雨发布了新的文献求助10
4秒前
Orange应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
勤劳冰烟应助科研通管家采纳,获得10
7秒前
风清扬应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
9秒前
所所应助优雅冰淇淋采纳,获得10
9秒前
9秒前
10秒前
HHHHTTTT完成签到,获得积分10
10秒前
yznfly应助爱听歌的老九采纳,获得30
11秒前
12秒前
AEROU完成签到 ,获得积分10
14秒前
健忘芷珊完成签到,获得积分10
15秒前
shinn发布了新的文献求助10
16秒前
彭于晏应助HK采纳,获得10
16秒前
想吃糖葫芦完成签到 ,获得积分10
16秒前
秦萍发布了新的文献求助10
16秒前
桐桐应助专注的可乐采纳,获得10
17秒前
17秒前
17秒前
17秒前
一一发布了新的文献求助10
18秒前
18秒前
sarah发布了新的文献求助10
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303