作者
Jia Jia,Junhong Bai,Rong Xiao,Senlin Tian,Dawei Wang,Wei Wang,Guangliang Zhang,Hao Cui,Qingqing Zhao
摘要
Coastal reclamation for cropland has led to the accumulation of heavy metals in soils, bringing about pervasive and severe risks for environment and human health. However, less is known about the influence of long-term reclamation on heavy metals risk, mobility and bioavailability in cropland soil. In this study, we determined six heavy metals (Cd, Cr, Ni, Cu, Zn and Pb) and their fractionations in soils from five croplands across a 100-year reclamation chronosequence in the Pearl River estuary. Results showed that across five reclaimed soils, Cd posed seriously ecological risk and bioavailability according to assessments based on both total contents (single-metal pollution index: Cd > Cu > Zn > Ni > Cr > Pb) and fractionations (risk assessment code: Cd > Zn > Cu > Ni > Pb > Cr). Cr, Ni, Cu, Zn and Pb posed slightly to moderately ecological risks, and were mainly bound to residual (73.70%) and reducible (15.86%) fractions with lower mobility and bioavailability. With the highest risks level, mobility, toxicity and bioavailability (5.67% exchangeable and 11.75% carbonate fractions bound), Cd was identified as the main pollution factor in study area. Principal component analysis and Pearson's correlation analysis revealed that anthropogenic reclamation activities (including phosphate fertilizers, pesticides and sewage irrigation) were the major sources of these heavy metals. Long-term reclamation activities induced the increases of soil organic matter, clay contents, total concentrations and non-residual fractions of heavy metals by 46.14%, 538.98%, 42.87% and 219.78%, respectively, demonstrating significant promotions in level and mobility of heavy metals due to longer-term agricultural activities, higher soil clay and organic matter content.