Fast meningioma segmentation in T1-weighted magnetic resonance imaging volumes using a lightweight 3D deep learning architecture.

分割 医学 磁共振成像 人工智能 计算机科学 图像分割 体素 卷积神经网络 放射科 脑膜瘤 深度学习 核医学 模式识别(心理学) Sørensen–骰子系数
作者
David Bouget,André Pedersen,Sayied Abdol Mohieb Hosainey,Johanna Vanel,Ole Solheim,Ingerid Reinertsen
出处
期刊:Journal of medical imaging 卷期号:8 (2): 024002- 被引量:2
标识
DOI:10.1117/1.jmi.8.2.024002
摘要

Purpose: Automatic and consistent meningioma segmentation in T1-weighted magnetic resonance (MR) imaging volumes and corresponding volumetric assessment is of use for diagnosis, treatment planning, and tumor growth evaluation. We optimized the segmentation and processing speed performances using a large number of both surgically treated meningiomas and untreated meningiomas followed at the outpatient clinic. Approach: We studied two different three-dimensional (3D) neural network architectures: (i) a simple encoder-decoder similar to a 3D U-Net, and (ii) a lightweight multi-scale architecture [Pulmonary Lobe Segmentation Network (PLS-Net)]. In addition, we studied the impact of different training schemes. For the validation studies, we used 698 T1-weighted MR volumes from St. Olav University Hospital, Trondheim, Norway. The models were evaluated in terms of detection accuracy, segmentation accuracy, and training/inference speed. Results: While both architectures reached a similar Dice score of 70% on average, the PLS-Net was more accurate with an F 1 -score of up to 88%. The highest accuracy was achieved for the largest meningiomas. Speed-wise, the PLS-Net architecture tended to converge in about 50 h while 130 h were necessary for U-Net. Inference with PLS-Net takes less than a second on GPU and about 15 s on CPU. Conclusions: Overall, with the use of mixed precision training, it was possible to train competitive segmentation models in a relatively short amount of time using the lightweight PLS-Net architecture. In the future, the focus should be brought toward the segmentation of small meningiomas ( 2 ml ) to improve clinical relevance for automatic and early diagnosis and speed of growth estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张家木完成签到,获得积分10
1秒前
MCS完成签到,获得积分10
1秒前
2秒前
爱学习完成签到,获得积分10
3秒前
JamesPei应助skevvecl采纳,获得10
4秒前
4秒前
5秒前
大鱼发布了新的文献求助30
6秒前
研友_VZG7GZ应助美丽越彬采纳,获得10
6秒前
秋叶完成签到,获得积分10
6秒前
7秒前
7秒前
哈哈哈666发布了新的文献求助10
7秒前
bkagyin应助要大杯多肉葡萄采纳,获得10
8秒前
雪霁梅香完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
嘻嘻哈哈完成签到 ,获得积分10
9秒前
9秒前
乐乐应助MM采纳,获得10
9秒前
10秒前
10秒前
张凤完成签到,获得积分10
10秒前
四文鱼发布了新的文献求助10
10秒前
xiaohao完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
11秒前
无花果应助spume采纳,获得10
11秒前
Lucy发布了新的文献求助10
12秒前
小马甲应助白茶泡泡球采纳,获得10
12秒前
yunny发布了新的文献求助10
13秒前
DC发布了新的文献求助10
14秒前
5555发布了新的文献求助10
15秒前
skevvecl发布了新的文献求助10
15秒前
赘婿应助科研小白采纳,获得10
16秒前
神勇善斓发布了新的文献求助10
17秒前
17秒前
安详的大雁完成签到,获得积分10
17秒前
爱静静应助lq采纳,获得10
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460