Fe3C-Assisted Single Atomic Fe Sites for Sensitive Electrochemical Biosensing

化学 电化学 催化作用 生物传感器 纳米技术 活动站点 检出限 金属 碳纳米管 密度泛函理论 纳米晶 电极 计算化学 物理化学 材料科学 生物化学 色谱法 有机化学
作者
Xiaoqian Wei,Shaojia Song,Weiyu Song,Weiqing Xu,Lei Jiao,Xin Luo,Nannan Wu,Hongye Yan,Xiaosi Wang,Wenling Gu,Lirong Zheng,Chengzhou Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (12): 5334-5342 被引量:94
标识
DOI:10.1021/acs.analchem.1c00635
摘要

The rational construction of advanced sensing platforms to sensitively detect H2O2 produced by living cells is one of the challenges in both physiological and pathological fields. Owing to the extraordinary catalytic performances and similar metal coordination to natural metalloenzymes, single atomic site catalysts (SASCs) with intrinsic peroxidase (POD)-like activity have shown great promise for H2O2 detection. However, there still exists an obvious gap between them and natural enzymes because of the great challenge in rationally modulating the electronic and geometrical structures of central atoms. Note that the deliberate modulation of the metal-support interaction may give rise to the promising catalytic activity. In this work, an extremely sensitive electrochemical H2O2 biosensor based on single atomic Fe sites coupled with carbon-encapsulated Fe3C crystals (Fe3C@C/Fe-N-C) is proposed. Compared with the conventional Fe SASCs (Fe-N-C), Fe3C@C/Fe-N-C exhibits superior POD-like activity and electrochemical H2O2 sensing performance with a high sensitivity of 1225 μA/mM·cm2, fast response within 2 s, and a low detection limit of 0.26 μM. Significantly, sensitive monitoring of H2O2 released from living cells is also achieved. Moreover, the density functional theory calculations reveal that the incorporated Fe3C nanocrystals donate electrons to single atomic Fe sites, endowing them with improved activation ability of H2O2 and further enhancing the overall activity. This work provides a new design of synergistically enhanced single atomic sites for electrochemical sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuelong发布了新的文献求助30
刚刚
1秒前
prove应助xuan采纳,获得10
2秒前
郁馨云梦发布了新的文献求助10
2秒前
李健的小迷弟应助xuan采纳,获得10
2秒前
搜集达人应助xuan采纳,获得10
2秒前
asdfzxcv应助xuan采纳,获得10
2秒前
2秒前
LL完成签到 ,获得积分20
3秒前
3秒前
4秒前
4秒前
月月发布了新的文献求助10
4秒前
科研通AI6应助轻松的沛萍采纳,获得10
5秒前
Owen应助旺旺碎冰冰采纳,获得10
5秒前
5秒前
川农辅导员完成签到,获得积分10
5秒前
7秒前
0美团外卖0完成签到,获得积分10
7秒前
丰富的安梦应助xuan采纳,获得30
8秒前
充电宝应助xuan采纳,获得10
8秒前
科研通AI6应助xuan采纳,获得10
8秒前
小马甲应助xuan采纳,获得10
8秒前
科研通AI6应助xuan采纳,获得10
8秒前
天天快乐应助xuan采纳,获得10
8秒前
852应助xuan采纳,获得10
8秒前
Orange应助xuan采纳,获得10
8秒前
科研通AI6应助xuan采纳,获得10
8秒前
情怀应助xuan采纳,获得10
8秒前
英吉利25发布了新的文献求助10
8秒前
9秒前
9秒前
LL关注了科研通微信公众号
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
小蘑菇应助小姜同学采纳,获得10
9秒前
qiushuang发布了新的文献求助10
10秒前
原yuan发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656560
求助须知:如何正确求助?哪些是违规求助? 4804154
关于积分的说明 15076185
捐赠科研通 4814847
什么是DOI,文献DOI怎么找? 2576000
邀请新用户注册赠送积分活动 1531353
关于科研通互助平台的介绍 1489900